

Tijirit Project NI 43-101 Technical Report with Resource Estimate Update Tijirit, Mauritania

Respectfully submitted to:

Algold Resources Ltd

By: Yann Camus, P.Eng., SGS Canada (Geostat) Effective Date: January 19, 2018 Report Date: April 10, 2018

Minerals Services

SGS Canada Inc.

10 boul. de la Seigneurie Est, Suite 203, Blainville, Québec Canada, J7C3V5 t (450) 433 1050 f (450) 433 1048 www.sgs.ca/en/Mining

Disclaimer:

This document is issued by the SGS Canada Inc. under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined there in. Any holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of the Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Certificate of Qualified Person, Date and Signature Page

Yann Camus, P.Eng. yann.camus@sgs.com I, Yann Camus, P. Eng. of Blainville, Quebec, do hereby certify:

- a) I am a Mineral Resource Engineer for SGS Canada Inc, Geostat with an office at 10 Boul. de la Seigneurie Est, Suite 203, Blainville Quebec Canada, J7C 3V5.
- b) This certificate applies to the technical report entitled "Tijirit Project NI 43-101 Technical Report with Resource Estimate Update" dated April 10, 2018 (the "Technical Report") with an effective date of January 19, 2018.
- c) I am a graduate of the École Polytechnique de Montréal (B.Sc. Geological Engineer, in 2000). I am a member of good standing, No. 125443, of the l'Ordre des Ingénieurs du Québec (Order of Engineers of Quebec). My relevant experience includes continuous mineral resource estimation since my graduation from University including many gold projects. I am a "Qualified Person" for purposes of National Instrument 43-101 (the "Instrument").
- d) My most recent visit of the site is from August 14 to August 18, 2017.
- e) I am responsible for all sections of the Technical Report.
- f) I am independent of Algold Resources or its subsidiaries, as defined by Section 1.5 of the Instrument.
- g) My prior involvement with the project is the preparation of maiden resources and supporting technical report dated August 4, 2016. I also prepared a resource update and supporting technical report named "Tijirit Property NI 43-101 Technical Report with Resource Estimate Update, Tijirit, Mauritania", dated June 15, 2017 with two effective dates: March 17, 2017 for Eleonore zone and November 4, 2016 for Sophie and Lily zones.
- h) I have read the Instrument and the sections of the Technical Report that I am responsible for have been prepared in compliance with the Instrument.
- i) As of the effective date of the Technical Report, to the best of my knowledge, information, and belief, the Technical Report, or part that as a qualified person I'm responsible for, contains all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.

Signed and dated this 10th day of April 2018 at Blainville, Quebec, Canada.

Original Document Signed and Sealed

Yann Camus, P. Eng. Mineral Resource Engineer SGS Canada Inc. - Geostat

Table of Contents

Certific	cate of Qualified Person, Date and Signature Page	iii
1. 5	Summary	1
1.1	The Property	1
1.2	History	2
1.3	Geology & Mineralization	2
1.4	Exploration and Drilling Activity	3
1.5	Sample Preparation, Analysis and Security	3
1.6	Data Verification	4
1.7	Metallurgical Testing	4
1.8	Resource Estimates	5
1.9	Environmental Studies, Permitting and Social or Community Impact	7
1.10	Interpretation and Conclusions	7
1.11	Recommendations	8
2. I	ntroduction	9
2.1	General	9
2.2	Terms of Reference	9
2.3	Currency, Units, abbreviations and Definitions	10
2.4	Disclaimer	11
3. F	Reliance on Other Experts	12
4. F	Property Description and Location	13
4.1	Location	13
4.2	Exploration Rights	14
4.3	Ownership, Royalties and Agreements	14
4.3	3.1 Ownership	15
4.3	8.2 Royalties	15
4.4	Permits and Environmental Liabilities	15
5. A	Accessibility, Climate, Local Resources, Infrastructure and Physiography	16
5.1	Physiography	16
5.2	Accessibility	16
5.3	Climate	18
5.4	Local Resources and Infrastructure	
5.5	Surface Rights	18

6.	History	19
6.1	Prior Ownership of the Property and Ownership Changes	
6.2	Regional Geological Studies	
6.3	Regional Geochemistry	21
6.4	Regional Geophysics	21
6.5	Previous Estimate	
6.6	Past Production	
7.	Geological Setting and Mineralization	24
7.1	Regional Geology	
7.2	Mineral Potential	
7.3	Property Geology	
7.4	Mineralization	
8.	Deposit Types	31
9.	Exploration	33
9.1	Geochemistry	
9.2	Satellite Imagery	
9.3	Geophysics	
9.4	Exploration of Salma and Eleonore East	
9.5	Dispersion of Gold in the Eleonore laterites - Implications for Exploration	
10.	Drilling	56
11.	Sample Preparation, Analyses and Security	61
11.1	1 Procedures Used by Algold	61
1	1.1.1 Core Sample Quality and Sample Representativity	
1	1.1.2 Standards Statistics	
1	1.1.3 Blanks Statistics	
1	1.1.4 Field Duplicates (Mixed RC and DDH, Prepared by Algold on Site)	
1	1.1.5 Pulp Duplicates (Randomly Selected by Algold)	70
1	1.1.6 Umpire Duplicates on the Algold RC Drillholes	70
1	1.1.7 Laboratory Duplicates on Algold RC Drillholes (Chosen by the Lab)	71
1	1.1.8 Laboratory Duplicates on Algold DDH (Chosen by the Lab)	
1	1.1.9 Cyanide Bottle Roll Tests	
11.2	2 Procedures Used by Gryphon	
11.3	3 Procedures Used by Shield Mining	74

11.4	Procedures Used by Gryphon for the Diamond Drillholes	74
11.4.1	Core Sample Quality and Sample Representativity	75
11.4.2	2 Standards Statistics	75
11.4.3	Blanks Statistics	75
11.4.4	Field Duplicates (Gryphon)	75
11.4.5	Pulp Duplicates (Gryphon)	75
11.4.6	Field Duplicates in Trenches	76
11.4.7	Umpire Duplicates on the Shield Trenches	76
11.4.8	B Duplicates on Shield RC Drillholes	76
11.5	Conclusion	77
12. Dat	a Verification	78
12.1	Verification of the Algold 2017 Data	78
12.2	Site Visit	78
12.3	Witness Samples Found at the Tijirit Camp Site	
12.4	Verification Re-Assays – Independent Sampling by SGS	
12.5	Database Verification	
12.6	Conclusion	
13. Min	eral Processing and Metallurgical Testing	
13.1	Mineral Processing Testwork 2016	
13.2	Mineral Processing Testwork 2017	
13.2.1	Grindability Test	92
13.2.2	Parameters and Variability Tests	
13.2.3	Gravity/flotation/concentrate leach alternative	95
13.2.4	Gold deportment study	
13.3	Preliminary Environmental Tests	100
13.3.1	Modified Acid Base Accounting	100
13.3.2	2 Net Acid Generation Test	101
13.3.3	Water Quality	
14. Min	eral Resource Estimates	
14.1	Drill Hole Database	103
14.1	Mineralized Volumes (Envelopes)	
14.2	Composite Data	105
14.3	Capping	106

14.4	4	Density	107
1	4.4.1	Modeling of the Saprolite Depth for Density Attribution	108
14.5	5	Interpretation of the Mineralization	108
14.6	5	Resource Block Modelling	109
1	4.6.1	Variography	110
1	4.6.2	Grade Interpolation Methodology	114
14.7	7	Classification	115
1	4.7.1	Definitions	115
1	4.7.2	Classification Method	116
14.8	3	Optimized Open Pits	117
14.9	9	Mineral Resource Estimates (Base Case)	120
14.′	10	Mineral Resource Estimates (Various Alternate Cases)	121
14.1	11	Mineral Resource Estimates (For Eleonore – Alternate Cases with Open Pits)	122
15.	Min	eral Reserve Estimates	125
16.	Min	ing Methods	125
17.	Rec	overy Methods	125
18.	Pro	ject Infrastructure	125
19.	Mar	ket Studies and Contracts	125
20.	Env	ironmental Studies, Permitting and Social or Community Impact	126
20.1	1	Environmental and Social Impact Assessment Study	126
20.2	2	Artisanal Mining	126
20.3	3	Tailings Disposal	126
20.4	4	Permitting	127
21.	Cap	vital and Operating Costs	128
22.	Eco	nomic Analysis	128
23.	Adja	acent Properties	129
24.	Oth	er Relevant Data and Information	131
25.	Inte	rpretation and Conclusions	132
26.	Rec	commendations	133
27.	Ref	erences	135
28.	Ann	nex I – List of Diamond Drillholes on the Project	137
29.	Ann	ex II – List of Reverse Circulation Holes on the Project	140
30.	Ann	ex III – Drillholes Intersections Above 0.27 g/t Au	158

List of Tables

Table 1-1: Base Case Resources	6
Table 2-1: List of Abbreviations	10
Table 4-1: Tijirit Project Coordinates in UTM	13
Table 6-1: Previous Estimate of June 2017 (base case)	23
Table 7-1: Interpreted Stratigraphy of the Aouéouat v-s Belt (after Maurin et al. 1996)	27
Table 9-1: Tijirit Exploration Work Statistics since 2007	34
Table 9-2: 2012 RC Drilling Mineralized intersections in the Salma map area.	50
Table 11-1: Basic Statistics on the Standards	64
Table 12-1: List of Independently Measured Collar Locations and Validation	80
Table 12-2: List of 45 Independently Re-Assayed Samples – Database Au (g/t) vs Independent SGS Bamako Au (g/t)	85
Table 13-1: Head Grades	88
Table 13-2: Head Assay Summary	89
Table 13-3: Grindability Summary	89
Table 13-4: Head Grades	91
Table 13-5: Head Grades (Samples vs Composites)	92
Table 13-6: Grindability Summary	93
Table 13-7: Gravimetric and cyanidation test parameters for variability testing	93
Table 13-8: Variability Test Results	94
Table 13-9: CIL Results	95
Table 13-10: Gravity+ Flotation – Composites Samples	96
Table 13-11: Gravity+ Flotation – Composites Samples – Eleonore	97
Table 13-12: Bulk Flotation Test Results	97
Table 13-13: Flotation Concentration Cyanidation Test Results	98
Table 13-14: Chemical Gold Composition	98
Table 13-15: Gold Mineral Type and Abundance and Microscopic Distribution	99
Table 13-16: Composites Samples	. 100
Table 13-17: Results – Static Tests	. 101
Table 13-18: Results – Net Acid Generation Test	. 102
Table 14-1: Summary of Database Entries Used for the Estimates	. 103
Table 14-2: Summary of Database Entries by Hole Type	. 104
Table 14-3: List of the Mineralized Volumes and the Count of Mineralized Intervals	. 105
Table 14-4: Statistics on the Composites (Au) for Each Major Zone	. 106
Table 14-5: Statistics on the Composites (Au Cap) for Each Major Zone	. 106

Table 14-6: Capping and Gold Loss Based on Composites	. 107
Table 14-7: 2016-2017 Density Data Compared to Resource Densities	. 108
Table 14-8: Block Models Parameters	. 109
Table 14-9: Summary of the Variogram Model	. 113
Table 14-10: Assumptions Used for the Optimization of the Open Pits and Economical COG Calculations of Open Pit Resources	. 118
Table 14-11: Assumptions Used for the Economical COG Calculation of Underground Resources	. 118
Table 14-12: Base Case Resources	. 121
Table 14-13: Eleonore Resources at COGs of 1.5 g/t and 2.0 g/t Au	. 122
Table 14-14: Sophie/Lily Resources at COGs of 1.5 g/t and 2.0 g/t Au	. 122
Table 14-15: Eleonore Zone Sensitivity Analysis - Various Cut-off Grades (within 0.4 g/t Au Whittle pit constraint)	. 122
Table 14-16: Mineral Resources for Eleonore In Pit vs Under Pit at COGs of 0.4 g/t and 1.7 g/t Au	. 123
Table 14-17: Mineral Resources for Eleonore In Pit vs Under Pit at COGs of 0.6 g/t and 1.7 g/t Au	. 123
Table 14-18: Mineral Resources for Eleonore In Pit vs Under Pit at COGs of 1.0 g/t and 1.7 g/t Au	. 123
Table 14-19: Mineral Resources for Eleonore In Pit vs Under Pit at a COG of 1.5 g/t Au	. 124
Table 14-20: Mineral Resources for Eleonore In Pit vs Under Pit at a COG of 2.0 g/t Au	. 124
Table 14-21: Mineral Resources for Eleonore In Pit vs Under Pit at a COG of 2.5 g/t Au	. 124
Table 23-1: Adjacent Properties and Permit Owners	. 129
Table 26-1: Recommended Budget	. 134
Table 28-1: List of DDH Holes on the Project	. 137
Table 29-1: List of RC holes	. 140
Table 30-1: Drillholes Intersections Above 0.27 g/t Au	. 158

List of Figures

Figure 4-1: (Geological Map of West Africa (1:5,000,000) with Location of Tijirit Properties in relation to the Capital Nouakchott and Other Major Mines in RIM. (after UNESCO Geological Map 1988)	14
Figure 5-1: F	Political Map of Mauritania with Administrative Regions	17
Figure 6-1: (Geology Sketch of West Africa showing the Location of the Tijirit Project Southwest of the Reguibat Shield (After BGS 2004a)2	20
Figure 6-2: F	Radiometric Thorium Signal over the 1:200,000 Chami Map Sheet (#2015)	22
Figure 7-1: 0	Geology of the 1:200,000 Chami Map Sheet Showing the Location of the Tijirit Project2	25
Figure 7-2: I	Major Shear Zones and Deformation Affecting the Tasiast-Tijirit Aouéouat Volcanic and Sedimentary Assemblages (BGS 2004a)	26
Figure 7-3:	Geological Map of the Tijirit Project with Interpreted Structures. After Gryphon Geological Map (2015)	30
Figure 9-1:	Distribution of 37,039 Soil Analyses and the >51 ppb Au Threshold (Big Yellow Symbols) Underlain by Tijirit Geology	37
Figure 9-2: I	Distribution of Soil Analyses >51 ppb Au Threshold (Blue Symbols) Underlain by Total Soil Interpolation Map	38
Figure 9-3:	Tijirit Close-Up Distribution of Trenches, Trench Samples and Results above 1 g/t Au (Pink Symbols)	39
Figure 9-4:	Tijirit Soil Anomaly Contours for 30, 50 and 100 ppb Au and the Distribution of Surface Samples (blue) and Samples Above 1 g/t Au as Red Symbols. Some samples (7) in the Salma Zone are Above 30 g/t Au	40
Figure 9-5: 7	Tijirit Distribution of Auger Drill hole with a Mean Depth of 6 m	41
Figure 9-6:	Tijirit 50 cm Hi-Res Satellite Image with Structural Interpretation, 51 ppb Soil Anomalies, RC and Core Drilling Distribution. After Davies (2012)	12
Figure 9-7: I	Magnetic Vertical Derivative Signal with Structural Interpretation, 51 ppb Soil Contours (Yellow), Drill Sites and Target Areas	14
Figure 9-8: 1	Thorium Radiometric Signal with Structural Interpretation, Drill Sites and Target Areas	45
Figure 9-9: I	Prospect IP dp-dp Lines showing 51 ppb Anomaly Contours (yellow) and RC and Core	46
Figure 9-10	: Location of the Salma-Eleonore-East area, 3 km east of the main mineralized Eleonore zone. Geology after Davies (2012)	47
Figure 9-11:	: Geology of the Salma zone showing the limit of the eastern granite in contact with underlying metabasite sequences (green-blue)	48
Figure 9-12:	Distribution of the ferricrete on the Eleonore zone, with soil anomalies (30, 50, 100 & 200 ppb Au), drill holes (yellow symbols), the projection of mineralized zones (green lines), the faults (blue lines) and the structural trends (gray lines).	52
Figure 9-13:	Sketched mineralized zone detected by drilling in the eastern portion of the Eln section and projected zone on the west side underneath the 50 ppb anomaly of Figure 9-12. The soil anomalies are created by the collapse of the saprolite, the dismantlement of the quartz veins and the concentration of gold.	54

Figure 9-14: Sketched mineralized zone detected by drilling in the eastern portion of the Elc section and projected zone on the west side underneath the 50 ppb anomaly of Figure 9-12	54
Figure 9-15: Sketched mineralized zones detected by drilling on the eastern and western portion of the Els section underneath the 100 and 50 ppb anomalies of Figure 9-12	54
Figure 10-1: HQ Core Mineralized Intervals	57
Figure 10-2: Tijirit Distribution of RC (orange) and Core Drill (red) Holes	59
Figure 10-3: Tijirit Mineralized Drillholes > 0.9 g/t Au (yellow: 2009-2012 brown: 2016 red: 2017)	60
Figure 11-1: Individual Assays for the 10 Standards Studied by SGS	65
Figure 11-2: Performance for the QAQC Standards Oreas-200 (Left) and Oreas-65a (Right)	65
Figure 11-3: Performance for the QAQC Standards AMIS0221 (Left) and AMIS0482 (Right)	66
Figure 11-4: Performance for the QAQC Standards Oreas-15d (Left) and Oreas-224 (Right)	66
Figure 11-5: Performance for the QAQC Standards Oreas-206 (Left) and Oreas-67a (Right)	66
Figure 11-6: Performance for the QAQC Standards Oreas-228 (Left) and Oreas-208 (Right)	67
Figure 11-7: Performance for the QAQC Blanks	68
Figure 11-8: Scatterplot of the Algold Field Duplicates (Left) – QQ plot (Right)	69
Figure 11-9: Scatterplot of Umpire Duplicates on the Algold RC Drillholes (Left) – QQ plot (Right)	70
Figure 11-10: Scatterplot of the Algold RC Drillholes Duplicates (Left) – QQ plot (Right)	71
Figure 11-11: Scatterplot of the Shield RC Drillholes Duplicates (Left) – QQ plot (Right)	72
Figure 11-12: Scatterplot of the Cyanide Bottle Roll Tests on RC Drillholes and DDH (Left) – QQ plot (Right)	73
Figure 12-1: Typical Drillhole Monument (Left) – Mr. Gallaugher, Mr. Ciesielski and Mr. Yann Camus somewhere between Sophie I and Sophie II (Right)	80
Figure 12-2: Core Boxes from Diamond Drillholes (Left) and Coarse Chip Trays from RC Drillholes (Right)	81
Figure 12-3: Witness Samples from the RC	82
Figure 12-4: Visible Gold (Inside Red Circles) as Photographed by the Author – Hole T17RD165 (Sophie 3)	82
Figure 12-5: Pictures of the 45 Independently Re-Assayed Samples	84
Figure 12-6: Scatterplot of the 30 Independently Re-Assayed Samples – Independent SGS Bamako Au (g/t) vs Database Au (g/t)	86
Figure 13-1: Leach Kinetics	94
Figure 13-2: Overall Microscopic Gold Distribution – Weighted to Gold in Product – By Surface Area	99
Figure 14-1: Map of the 4 Grids Used for Block Models	109
Figure 14-2: Short Range Variogram Model	111
Figure 14-3: Long Range Variogram Model	112
Figure 14-4: Short Range and Long Range Variogram Model	113
Figure 14-5: Section S9840 through Eleonore Pits with Blocks Visible from Zones Eleonore_Nord_12, 8, 16, 24, 19, 7, 1, 4, 26, 5, and 18 from Left to Right	118

Figure 14-6: Section S2480 Through Lily Pits with Blocks Visible from Zones Lily_N, C, D and E	
from Left to Right	119
Figure 14-7: Eleonore Pits with Resource Block Models	119
Figure 14-8: Sophie and Lily Pits with Resource Block Models	120
Figure 23-1: Tijirit (2480C2) and Tijirit-East (1117B2) permits and Adjacent Permits on the 1:200,000 Geological Map. RIM Mining & Exploration Licenses as of 2017	130

1. Summary

Algold (ALG - TSX.V) is a Canadian junior company focusing on exploration and development of gold deposits in West Africa.

TIREX SA, a public limited company under Mauritanian law regularly incorporated and registered in the Nouakchott trade register on April 27, 2016 under the numbers 91408/GU/12417 (analytic register) and 1994 (chronological register) is a subsidiary of Kanosak Barbados, which is a subsidiary of the Algold Resources Company Ltd. ("Algold"), a Canadian company listed on the Toronto Stock Exchange in Canada.

Algold, on behalf of TIREX SA, commissioned the author to prepare an update of the previous 2017 estimate with a NI 43-101 technical report. It includes the 1117B2 exploration permit and the 306 km² 2480C2 mining concession granted to TIREX by the Mauritanian government on June 12, 2017 for a period of 30 years. This concession gives TIREX SA exploration and exploitation rights for the gold and related substances covered by this permit.

The previous technical report was dated June 15, 2017 and the previous estimate had two effective dates: March 17, 2017 for Eleonore zone and November 4, 2016 for Sophie and Lily zones.

Yann Camus, P.Eng. Mineral Resource Engineer with SGS Geostat is the Qualified Person (QP) under NI 43-101 for this report and responsible for all sections of this report. Algold Resources (Algold) may use this Technical Report to satisfy disclosure and filing requirements of Canadian securities regulators. The effective date of the Technical Report is of January 19, 2018.

1.1 The Property

The Tijirit project is located in northwestern Mauritania, 260 km NNE of the capital Nouakchott and 200 km ESE (direct) of the major city of Nouâdhibou, located on the Atlantic coast. The project is comprised of the Tijirit mining concession 2480C2, covering 306 km², and of the adjacent exploration permit 1117B2, covering 460 km², in the administrative districts of Inchiri and Dakhlet Nouâdhibou Districts.

Initially, the Tijirit project consisted of exploration permits 447B2 and 1117B2. The exploration project was originally owned by Shield Mining from 2007 to 2010 who sold the rights to Gryphon Minerals who in turn sold the rights to Algold (see Item 4).

The project is free of royalties to past owners. Since the modification of the Mining Code in 2014, a royalty (linked to the gold price) which varies from 4.0 to 6.5 % is payable to the RIM (Islamic Republic of Mauritania). After the effective date of January 19 2018, an additional NSR royalty of 1.5 % has be granted to Osisko Royalties as of February 1, 2018.

The Tijirit project is accessed from Nouakchott on a paved highway for 150 km to the north and via a dirt track for 130 km to the northeast adjacent to the Akchâr dune bar. Nouâdhibou is closer, 200 km direct, but much farther by road. The project is accessible year-round by 4x4. A camp has been built on the

mining concession 2480C2 that can fully accommodate close to 100 persons, with offices and dormitories. It is equipped with 2 main-200 and one-80 kva electrical power generators. Fresh water is currently brought to site by means of a tanker truck from the Tijirit water drill hole located 80 km to the southwest of camp. The camp is also equipped for local communication, satellite phones and VSAT station for internet. Sample storage, a sample preparation laboratory operated by SGS and working facilities are also available on site.

1.2 History

The Tijirit exploration permit 447B2 covered 1000 km². It was first granted to Shield Mining Mauritania SA under RIM decree 2007-200 of November 20, 2007 for three-year period in the Guelb Enich - Inchiri area. It was renewed a first time under decree 2010-256 of November 24, 2010. The permit was transferred to Gryphon Minerals Mauritania SA under decree 2013-876 of May 23, 2013. The permit was renewed a second time to Gryphon under decree 2014-036 of April 20, 2014. Permit 447B2 expired after a three-year period in June 2017. On June 12, 2017 Algold obtained from the Government of Mauritania a separate mining concession (2480C2) for a 306 km² portion of the 447B2 permit. The concession is valid for a period of 30 years.

The Tijirit exploration permit 1117B2 is adjacent to the east to permit 447B2 and covers 460 km². The permit was first granted to Shield Mining Mauritania SA under RIM decree 2010-278 on December 13, 2010 for a three-year period in the Guelb-Enich - Inchiri area. It was transferred to Gryphon Minerals Mauritania SA under decree 2013-877 on May 23rd, 2013. The permit was first renewed for a three-year period under decree 2014-121 on August 2014 for three-year period. The permit expires after a 6-year period in 2020.

A previous updated Mineral Resource was carried out by SGS in 2017 with a technical report entitled "Tijirit Property NI 43-101 Technical Report with Resource Estimate Update, Tijirit, Mauritania" dated June 15, 2017. The previous estimate had two effective dates: March 17, 2017 for Eleonore zone and November 4, 2016 for Sophie and Lily zones. Table 6-1 shows the historical estimate (base case) with a cut-off grade of 0.4 g/t inside pits and 1.4 g/t below pits except for Eleonore at a global COG of 1.5 g/t.

1.3 Geology & Mineralization

Gold mineralization at Tijirit is believed to be directly related to NNE-trending deformation events where hydrothermal fluids were channeled along these conduits resulting in sulphides and silicification, notably:

- In contact between meta-igneous and metabasic rocks;
- In quartz-carbonate veining and stockworks in contact between metasediments and ironformation;
- In the sheared contacts in metasedimentary or metabasic units;
- Or in large syn-tectonic quartz veins in sheared metabasic units.

Similar mineralization occurs on strike with the major prospects areas but also along sheared contact between large syn-tectonic pluton and surrounding metasedimentary units further east.

1.4 Exploration and Drilling Activity

Since being awarded the Licence in 2007, Shield Mining (Shield) carried out exploration activities, including regional and detailed soil sampling programs, trenches and some reverse-circulation (RC) drilling. This work led to the discovery of five main prospect areas prior to the acquisition by Gryphon Minerals. Gryphon carried out further works including 37,703 m of RC and 3,814 m of core drilling as well as a detailed airborne magnetic and radiometric survey. The RC program itself showed more than one hundred intersections with significant gold values (above 2 m at 0.30 g/t).

Between April and June 2016, Algold uncovered a series of quartz veins in trenches and pits on the Eleonore zone. These findings could possibly represent a large stockwork enclosed within a major shear zone, striking for more than 10 km in a north-northeast direction. Algold has drilled with the aim to expand the resource base in Eleonore. Since early May 2016, Algold has drilled over 50,000 metres of both RC and core holes.

From the beginning, a total of 92 Diamond Drilling (DDH) and 629 RC Drilling were completed and analyzed on the Tijirit project for respective lengths of 10,706 and 80,337 metres.

Following review and validation of the exploration work carried out on the Project, it is the author's opinion that it conforms to the industry standards. Given the mineralization discovered, the Tijirit project shows a high potential for further mineralization discoveries in the main prospect areas and their extensions. Further works and recommendations are proposed at the end of this report.

1.5 Sample Preparation, Analysis and Security

A standard operating procedure (SOP) document based on CIM best practice guidelines has been established by Algold and provides guidance and details on quality awareness, quality control (QAQC) implementation and monitoring during Reverse Circulation (RC) drilling. The procedures and techniques outlined within this protocol are considered to be compliant with NI 43-101 regulations. This has been confirmed by the author of the current report and by Mr. André Ciesielski, DSc, Geo, from Algold.

The data available from Algold suggests that QAQC for the Shield Mining work (2009-2010, RC holes and trenches) included field duplicates, umpire laboratory duplicates and laboratory checks (same laboratory). Shield Mining did not include standards and blanks inserted in sample batches.

In contrast, there is the full range of QAQC data for Gryphon work including standards, blanks, field duplicates and pulp duplicates. There is no indication in the QAQC data if an umpire laboratory was used.

The QAQC results were reviewed by the author and the results are deemed satisfactory to allow for the inclusion of this data in the resource estimate. The author, given the successful verification of the data and given that most items of the QAQC are satisfactory, believes that the sample preparation, security and analytical procedures are adequate to support the estimation of resources presented in this technical report.

1.6 Data Verification

The author did the following to ascertain that the database supporting the estimation of resources is sound and reliable:

- Verification of the highest assays of the Algold 2017 data against analytical certificates;
- Site visit (August 14 to 18, 2017);
- Independent sampling;
- Multiple database verifications;
- Verification of bias for RC holes and trenches.

The author did a verification of available analytical certificates to ascertain drill database conformity. A total of 200 of the highest assays belong to Algold 2017 new data, which represents 2.7 % of the new assays, have been verified against analytical certificates. The author found exact match between the verified certificates and 200 assays from the database coming from Algold drillholes, previous owner data has been verified for the preparation of the previous technical report.

The site visit allowed multiple verifications including the identification of visible gold in one drill hole. The independent sampling of 45 witness samples confirmed the database information. No bias was identified.

The standard database verifications run by SGS indicates a sound database, reliable for the estimation of resources. From the bias study between RC and DDH, and between trenches and DDH, SGS concludes that the DDH, RC and trenches can be used together for the estimation of resources.

In the previous technical report, the DDH by Gryphon were compared to some RC drillholes by Shield. The trenches by Shield and Gryphon were compared to DDH by Gryphon. Since all verifications are satisfying, it is also accepted that both work by Gryphon and Shield are sound and reliable for the estimation of resources.

1.7 Metallurgical Testing

To date, two series of metallurgical tests have been completed on the Tijirit project by Algold. The first series performed in the fall of 2016 included 4 composites from Eleonore, Sophie and Lily. The second series started in September 2017 on 16 composites assembled for variability tests is still being implemented as of January 19, 2018. Partial results are presented.

A first series of tests were conducted at SGS-Lakefield in Canada in 2016 on composite samples of HQ drill core collected in the Eleonore, Sophie I, Sophie II and Lily zones. The composite from the Eleonore Zone was characterized by quartz veins associated with metasediments, whereas composite from the Sophie I zone consisted of quartz veins within a banded iron formation (BIF). The composite of Sophie II consisted of a disintegrated ribbed iron formation (BIF) and that of Lily, of metasediments. Each of the composites weighed 70 kg and 130 kg.

Following the metallurgical tests of 2016, additional tests to confirm the first results were carried out during the year 2017, still at SGS Lakefield. Preliminary tests of variability were carried out on the

different zones. From the samples taken, 16 compounds were assembled for the variability tests. Subsequently, all the compounds of the same zone were assembled to serve as feed for the CIL tests. The samples were from drill cores collected from Eleonore North, Central and South, Sophie II, and Lily areas.

Both series of CIL tests shown that Tijirit gold respond well to the overall gravity and cyanidation process. In 2017, the gold recovery rates ranged from 95.1 to 98.1 % for an average of about 96 %.

Environmental testwork, which included modified acid base accounting (ABA) and net acid generation (NAG) tests, was completed on each of the main composites (heads and cyanidation residues).

1.8 Resource Estimates

The database contains 718 drillholes and 265 trenches with 76,297 assay results.

The SGS Genesis software was used for the modeling and estimation. Table 1-1 shows the base case resource with a cut-off grade of 0.4 g/t inside pits and 1.7 g/t below pits except for Eleonore at a global COG of 1.5 g/t.

A modeling cut-off grade of 0.3 g/t Au and minimum thickness of two metres along hole and a minimum accumulation of 1.2 m.g/t were used to delineate mineralised volumes. The 2,340 two-metre composites were capped at grades varying between 3.5 g/t Au and 45 g/t Au based on local extreme grades. Only 14 composites were capped. The gold loss is approximately 8 % for the resource. The density used for the estimation of the resource is 2.00 t/m³ for saprolite and 2.7 t/m³ for fresh rock in the Lily zone, 2.8 t/m³ in the Sophie II zone, 2.85 t/m³ in the Sophie II zone, 3.0 t/m³ in the Sophie I zone and 2.86 t/m³ in the Eleonore zone.

The project consists of 6 block models oriented in 4 different grids with block sizes varying between 2 m x 5 m x 2.5 m and 5 m x 5 m x 5 m. Except Lily, block models are turned to conform to the general orientations of the zones. Estimation was done by Inverse Square Distance with anisotropic distances influenced by ellipsoids in the calculation and the composite selection. A total of 220 separate volumes were estimated with 220 composite sets. A variable orientation for the ellipsoids has been used to ensure that the orientation of the composite search is always in line with the estimated mineralized volume extension. Two estimation passes were used with ellipsoids of 75 x 75 x 25 metres and 150 x 150 x 50 metres. The first pass uses a minimum of four and a maximum of seven composites, with a limit of two per drill hole. The second pass uses a minimum of two and a maximum of seven composites, with a limit of two per drill hole except for 35 volumes with a minimum of one. The smoothing of the estimation methodology has been verified in 2016 and was found to be adequate. The measured and indicated categories have been outlined by hand on longitudinal based on drilling density. Everything outside these limits have been attributed Inferred category. Drilling every 40 metres (Eleonore and Sophie I), 45 metres (Sophie II-III) and 50 metres (Lily) was classified as indicated. Drilling every 30 metres (all except Lily) and 35 metres (Lily) was classified as measured. Only Sophie and Lily have been attributed Measured, Indicated and Inferred resources, Eleonore has been attributed with only Indicated and Inferred resources. Eleonore has a maximum interpolation up to 100 metres. Sophie and Lily zones have interpolation up to 200 metres. All zones have extrapolation limited to 45 metres, except for LilyG

structure, extensions of up to 80 m have been used at depth, as this zone have the thickest mineralized intervals (around 25 m) and simple geometry.

In order to limit resources to quantities with reasonable potential for profitable extraction, resources are limited by optimized pits. The new assumptions are a gold price of US \$ 1,500/oz, mining recovery of 95 %, mining dilution of 5 % (for Sophie/Lily) and 10 % (for Eleonore), processing recovery of 96 % (for Sophie/Lily) and 97 % (for Eleonore), a processing cost of \$12.02/t, a G&A cost of \$3.69/t and an open pit mining cost of \$1.41/t. For underground mining costs, the current assumption is \$40/t. Based on these assumptions; the economically viable cut-off grades are 0.4 g/t Au in open pits and 1.5 g/t Au under the pits. Accordingly, Algold decided to retain COGs of 0.4 g/t Au in open pits and 1.7 g/t Au for Sophie/Lily and a global COG of 1.5 g/t Au for Eleonore.

Table 1-1: Base Case Resources

Zone	Classification	Au (g/t)	Tonnage (t)	Ounces (Au)
Eleonore	Indicated	4.08	719,000	94,250
Eleonore	Inferred	4.07	3,016,000	394,690

Zone	Classification	Au (g/t)	Tonnage (t)	Ounces (Au)
Sophie/Lily	Measured	0.98	376,000	11,900
Sophie/Lily	Indicated	0.93	2,122,000	63,300
Total Sophie/Lily	Measured + Indicated	0.94	2,498,000	75,200
Sophie/Lily	Inferred	1.06	7,476,000	254,100

Zone	Classification	Au (g/t)	Tonnage (t)	Ounces (Au)
Total Sophie/Lily/Eleonore	Measured	0.98	376,000	11,900
Total Sophie/Lily/Eleonore	Indicated	1.72	2,841,000	157,550
Total Sophie/Lily/Eleonore	Measured + Indicated	1.64	3,217,000	169,450
Total Sophie/Lily/Eleonore	Inferred	1.92	10,492,000	648,790

1. Effective date for Eleonore and Sophie/Lily resources is January 19, 2018.

2. The independent QP for this resources estimate is Yann Camus, Eng., SGS Canada Inc.

- 3. The mineral resources are presented at a 0.4 g/t Au cut-off grade in pits and 1.7 g/t Au cut-off grade under the pits, except Eleonore at a global cut-off 1.5 g/t Au.
- 4. The resources are presented without dilution.

5. Whittle pits have been utilized based on a gold value of US\$1,500/oz.

- 6. Mineral resources that are not mineral reserves do not have demonstrated economic viability. This disclosure does not include economic analysis of the mineral resources.
- 7. Totals may not add up due to rounding.
- 8. No economic evaluation of the resources has been produced.
- 9. This Resource estimate has been prepared in accordance with CIM definition (2014).
- 10. Density used is between 2.0 and 3.0 depending on rock type and alteration based on measurements.
- 11. Capping varies from 3.5 g/t Au (Lily) to 45 g/t Au (Eleonore) depending on extreme local grade.

1.9 Environmental Studies, Permitting and Social or Community Impact

In 2016, Algold gave the mandate to AECOM to prepare an Environmental and Social Impact Assessment Study (ESIA) on Tijirit Project. As part of the consultation process, AECOM conducted additional investigations with stakeholders to collect information and to have further discussions. Meetings were held with Algold employees and with representatives of the wilayas of Inchiri and Dakhlet-Nouâdhibou; from Chami moughataa as well as Chami and Tmeïmichat Townships.

The study was given to the Mauritanian Government at the end of 2016 and at the beginning of 2017, the Mauritanian Ministry of Environmental and Sustainable Development has provided a conclusive acceptance and opinion regarding the ESIA Study Report. According to Mauritanian Legislation, no other permits are required to proceed with the development of the project.

Some preliminary testwork have been conducted by SGS Lakefield in Canada in 2016 to asses the acid generation potential of the process plant residues. Results are presented in Item 13. Further tests are planned in 2018.

1.10 Interpretation and Conclusions

The Tijirit project is made up of the 2480C2 mining concession and 1117B2 exploration permit both in good standing, covering respectively 306 km² and 460 km². The project is located in western Mauritania, in the southwestern Precambrian Regulat shield and shows mostly Archean granite greenstone terrains. The project shows sheared and folded NNE-trending Archean metasedimentary and intermediate to ultramafic volcanic rocks in contact with porphyry, syn-tectonic granitoids and basement quartzo-feldspathic gneiss. The project was acquired by Shield Mining in 2007 after the discovery of gold mineralization and transferred to Gryphon Minerals in 2010 and acquired by Algold in March 2016.

A fair amount of exploration works was carried out in the past by the previous owners including a large soil survey, an airborne magnetic and radiometric survey, trenches, rock samples, auger drilling and 37,703 m of RC and 3,814 m of core drilling. Large gold soil anomalies were revealed in five prospect areas and a limited IP survey was done on the Sophie prospect.

Since the acquisition of the project, Algold has completed over 50,000 metres of core drilling and reverse circulation drilling in the Tijirit project. Algold has also prepared an environmental and social impact study that was submitted to the Mauritanian government in 2016. SGS Lakefield was commissioned to implement two metallurgical test programs in 2016 and 2017. In February 2017, the Minister Environment and Sustainable Development of Mauritania has agreed to the environmental feasibility of the Tijirit gold mining project.

To date, Algold has been able to substantially increase resources on the Tijirit project, especially on Eleonore and to identify promising new areas (Salma, Eleonore East, Nour, Southeast). Efforts over the next few months will be required to better define these new areas and to increase drilling density on already known areas in order to transform the majority of existing inferred resources into indicated or measured resources.

The work done to date has demonstrated the potential of the Tijirit project and several recommendations are made to continue the development of this project.

After compiling the information and making a number of verifications, it is the author's opinion that the exploration work, drilling and trenching was done according to the industry standards and that the information is reliable.

There are no uncertainties or risks related to the information inspected by the author other than standard risks in the mining industry like price drops and such.

The Tijirit project shows a high potential for further mineralization discoveries on the main prospects, on their extensions and possibly along sheared meta-igneous contacts to the east. It is the author's opinion that the project has the potential of carrying large gold mineralized systems.

1.11 Recommendations

SGS recommends proceeding with the following development plan for the Tijirit Project. The plan presented here is aligned with Algold's strategy of development for the Project.

- Proceed with a Preliminary Economic Assessment (PEA) of the project based on the current resource estimations;
- Do some infill drilling to cover current resources. The aim is to increase the quantity of indicated resources (and possibly measured)
 - Focus on inpit resources first as they are closer to surface, probably easier to extract, and they require shorter drillholes so much less costly drilling
- Proceed with more different extractive tests (heap leach amenability test, gravimetric and cyanidation tests, comminution tests and environmental testwork) on the different mineral types (BIF and Non-BIF) and also on different grades representative of the resource contained in Whittle Pits (medium-low grade and medium-high grade);
- Exploration of new recent discoveries that are not at the resource development stage including mapping, structural study, additional soil survey, trenching, additional geophysics, hydrological and geotechnical studies, and preliminary drilling;

It is assumed that between 20 000 to 50 000 metres will be required for the next drilling phase. The expected cost to complete the above-mentioned exploration, drilling and sites costs, metallurgical tests, and Preliminary Economic Assessment (PEA) is between 4.65 M\$ and 7.95 M\$; a high-level budget recommendation is outlined in Table 26-1.

2. Introduction

Algold (ALG - TSX.V) is a Canadian junior company focusing on exploration and development of gold deposits in West Africa.

TIREX SA, a public limited company under Mauritanian law regularly incorporated and registered in the Nouakchott trade register on April 27, 2016 under the numbers 91408 / GU / 12417 (analytic register) and 1994 (chronological register) is a subsidiary of Kanosak Barbados, a subsidiary of Algold Resources Company Ltd. ("Algold"), a Canadian company listed on the Toronto Stock Exchange in Canada.

Algold, on behalf of TIREX SA, commissioned the author to prepare an update of the previous 2017 estimate with a NI 43-101 technical report. It includes the 1117B2 exploration permit and the 306 km² (2480C2) mining concession granted to TIREX by the Mauritanian government on June 12, 2017 for a period of 30 years. This concession gives TIREX SA exploration and exploitation rights for the gold and related substances covered by this permit.

The previous technical report was dated June 15, 2017 and the previous estimate had two effective dates: March 17, 2017 for Eleonore zone and November 4, 2016 for Sophie and Lily zones.

2.1 General

Information for this Technical Report has been gathered from a number of geologists, government reports, independent technical reports and other mining company reports. This technical report is an update of the 2017 technical report from SGS entitled "Tijirit Property NI 43-101 Technical Report with Resource Estimate Update, Tijirit, Mauritania" and also refers to a 2015 private report from A Ciesielski, entitled "43-101 Technical Evaluation Report".

Yann Camus, P.Eng. is the qualified person (QP) for this report and is responsible for all sections of this report.

The author travelled to the Tijirit project on August 14 to 18, 2017, visited trench and drill sites, looked and photographed core mineralized intersections, inspected drill core and reject facilities and warehouse.

2.2 Terms of Reference

The present report is being prepared according to National Instrument 43-101 guidelines for mineral deposit disclosure and describes historic works, mineralization types and mineral potential of the project. Recommendations are presented for further exploration works.

Algold Resources may use this Technical Report to satisfy disclosure and filing requirements of Canadian securities regulators. The effective date of the Technical Report is of January 19, 2018.

2.3 Currency, Units, abbreviations and Definitions

Units of measurement used in this report conform to the SI (metric) system. All currency in this report is US dollars (US\$) unless otherwise noted. The coordinate system used in this report is the WGS84 ellipsoid, UTM zone 28, Northern Hemisphere.

Table 2-1: List of Abbreviations

g	grams		
οz	Troy ounce (31.1035 grams)		
g/t	gram per metric tonne equivalent to ppm		
ppm, ppb	parts per million, parts per billion		
km. km²	kilometre, square kilometre		
m. m²	metre, square metres		
masl	metre above sea level		
kva	kilovolt ampere		
Au	gold		
NNE	north-northeast		
ENE	east-northeast		
BRGM	Bureau de Recherches Géologiques et Minières		
BGS	British Geological Survey		
RIM	République Islamique de Mauritanie (Islamic Republic of Mauritania)		
OMRG	Office Mauritanien de Recherche Géologique		
PRISM	Projet de Renforcement Institutionnel du Secteur Minier		
SNIM	Société Nationale Industrielle et Minière		

2.4 Disclaimer

This NI 43-101 report with resource estimate is an update of the 2017 technical report from SGS entitled "Tijirit Property NI 43-101 Technical Report with Resource Estimate Update, Tijirit, Mauritania".

3. Reliance on Other Experts

The author of this Technical Report, Mr. Yann Camus, Eng., is not qualified to comment on issues related to legal agreements, royalties, permitting, and environmental matters. The author has relied upon the representations and documentations supplied by the Company management. The author has reviewed the mining titles, their status, the legal agreement and technical data supplied by Algold, and any public sources of relevant technical information. The author relies on the expertise of Mr. David Vilder, M. Env., CSR Advisor for Algold, for the information contains in Item 20 of this Technical Report.

4. Property Description and Location

4.1 Location

The Tijirit gold project is located in northwestern Mauritania, 260 km NNE of the capital Nouakchott and 200 km ESE (direct) of the major city of Nouâdhibou, located on the coast. The project is comprised of the Tijirit mining concession 2480C2, covering 306 km², and of the adjacent exploration permit 1117B2, covering 460 km², in the administrative districts of Inchiri and Dakhlet Nouâdhibou Districts, Figure 4-1 and Figure 5-1. Both properties are governed by two different Mining Convention ("Convention Minière"). All resources are on the mining licence 2480C2.

The two permits of the project are limited by the following UTM coordinates (UTM zone 28N, datum WGS84), Table 4-1.

ld	East	North	
2480C2			
1	472,000	2,242,000	
2	489,000	2,242,000	
3	489,000	2,260,000	
4	472,000	2,260,000	
1117B2			
1	491,000	2,270,000	
2	500,000	2,270,000	
3	500,000	2,225,000	
4	480,000	2,225,000	
5	480,000	2,230,000	
6	491,000	2,230,000	
UTM zone 28N, datum : WGS84			

Table 4-1: Tijirit Project Coordinates in UTM

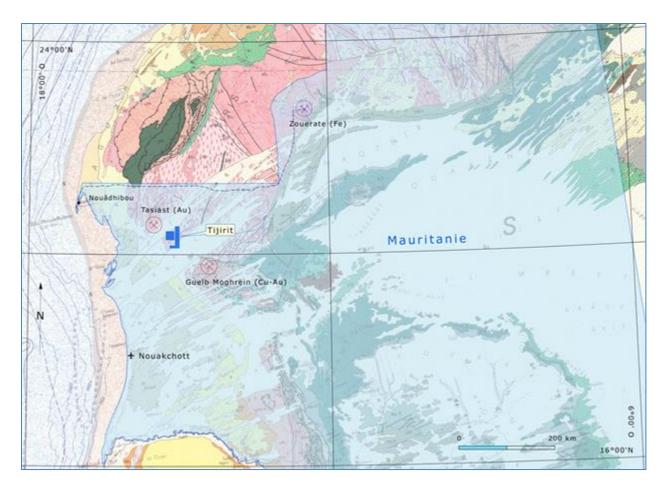


Figure 4-1: Geological Map of West Africa (1:5,000,000) with Location of Tijirit Properties in relation to the Capital Nouakchott and Other Major Mines in RIM. (after UNESCO Geological Map 1988)

4.2 Exploration Rights

Tirex holds the rights to the Tijirit project which consists of an exploration license (1117B2) and a mining concession (2480C2) as detailed in Item 4.1. The Tijirit-East exploration permit 1117B2 is adjacent to the east to the mining concession and covers 460 km². The exploration permit expires after a 6-year period in 2020. Since June 12, 2017, a portion of 306 km² of the original exploration permit 447B2 has been converted into a mining concession valid for 30 years.

4.3 Ownership, Royalties and Agreements

Algold has exercised the option (Press Release of March 11, 2016) to acquire the properties from Gryphon Minerals. The Tijirit project was one of three properties acquired by Algold in Mauritania from Gryphon. The details of the acquisition can be found in press releases from Algold dated October 28, 2015, February 12 and March 11, 2016.

Ownership 4.3.1

Tirex is 100 % owner of the project.

4.3.2 Royalties

The project is free of royalties to past owners.

Since the modification of the Mining Code in 2014, a royalty (linked to the gold price) which varies from 4.0 to 6.5 % is payable to the RIM, according to the following gold price levels: After the effective date of January 19 2018, an additional NSR royalty of 1.5 % has be granted to Osisko Royalties as of February 1, 2018.

•	below 1,000 USD per ounce :	4.0 %
٠	between 1,000 and 1,200 USD per ounce :	4.5 %
٠	between 1,200 and 1,400 USD per ounce :	5.0 %
٠	between 1,400 and 1,600 USD per ounce :	5.5 %
•	between 1,600 and 1,800 USD per ounce :	6.0 %

between 1,600 and 1,800 USD per ounce : •

above 1,800 USD per ounce : •

Permits and Environmental Liabilities 4.4

To the knowledge of the author the Tijirit project is only subjected to the environmental guidelines of the mining code of Mauritania.

6.5 %

5. Accessibility, Climate, Local Resources, Infrastructure and Physiography

5.1 Physiography

The topography of the Tijirit project area consists mainly of flat, barren plains which are primarily covered by regolith and locally by sand dunes, or eroded paleo-lateritic profiles. It is located between the Azefâl and Akchâr main dune bars oriented to the northeast. The average elevation is approximately 130 masl to 150 masl.

The area has no permanent watercourse but is crossed by numerous, intermittent watercourses, known as "wadis", which flow for only a few days per year during rare high rain falls.

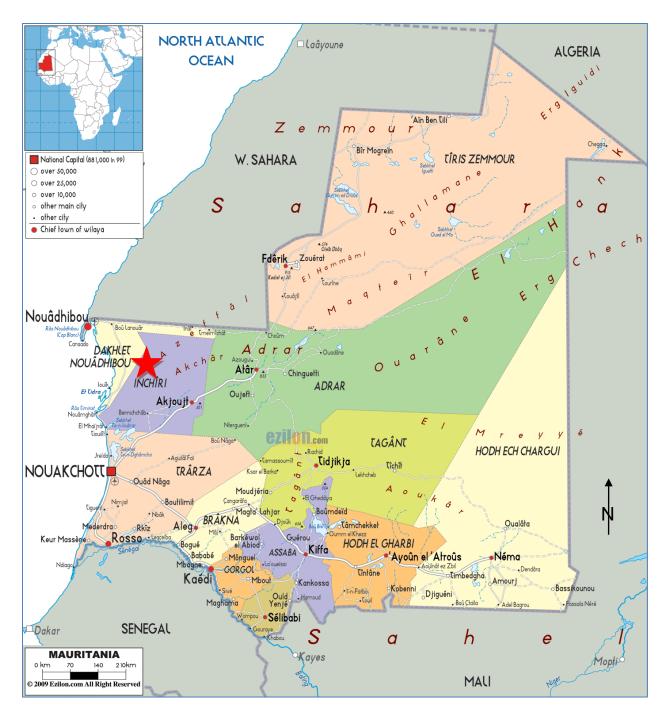
The Project is located in the arid Saharan zone, the predominant ecological area in Mauritania, where flora is very scarce and is mainly colonized by Aghaya (Zygophyllum album), together with Aghar (Maerua crassifolia, atil) and Drinn (Aristida pungens, sbot). Acacias are also present along many of the wadis. There are no forests in the area.

Small rodents (such as hares, hamsters and gerbils) are the most common mammals in the area, while jackals, fennec fox and zorille fox have been observed in the area.

Current third-party land use in the area consists of occasional nomadic camel and sheep farmers. There are no villages or agricultural farms activity within or around the project area.

As of April 2016, a fair number of artisanal miners have started to congregate on the Eleonore zone of the Tijirit project. By law, this activity was considered illegal. As of May 2016, following modifications to the mining code, the government issued a large number of artisanal miner's licences. However, these licences were all approved outside of Tijirit project, thus all artisanal mining activity on the Tijirit project is illegal. As a matter of good social corporate responsibility, Algold has decided to not interfere and monitor the artisanal work for the time being.

5.2 Accessibility


The Tijirit project is accessed from Nouakchott on a paved highway for 150 km to the north and via a dirt track for 130 km to the northeast. Nouâdhibou is closer, 200 km direct, but much farther by road.

The main ports of entry for goods and consumables are either Nouakchott or Nouâdhibou. Materials are transported by road to the various sites.

Access within Mauritania is provided by a road network, of approximately 3,000 km of paved highways and approximately 8,000 km of unpaved highways as well as numerous desert tracks.

A paved 470 km long, two-lane highway runs between Nouakchott and Nouâdhibou, 425 km to the north, Figure 5-1.

Figure 5-1: Political Map of Mauritania with Administrative Regions

A 717-km long railway located along the border between Mauritania and Western Sahara is owned and operated by Société Nationale Industrielle et Minière de Mauritanie (SNIM). It is primarily used to haul iron ore from SNIM's iron ore mine at Zouérate to the port of Nouâdhibou. Access to the major urban centers of Mauritania is also possible via air. Nouakchott is accessible via international flights operated by numerous West and North African carriers; Air France also provides a direct connection to Paris.

5.3 Climate

Mauritania's climate is classified as arid desert (under the Köppen climate scale), with average annual high temperature above 45°C between May and August. Minimum temperatures may go below 10°C in December and January. Sandstorms frequently occur from January to March causing sand build up and dune formation. Sandstorms do vary in intensity and visibility can be reduced to several metres.

A rainy season, usually between July and September, does exist; however, the amount of rainfall and length of season varies spatially and temporally in the various regions of the country. Annual rainfall varies from a few millimetres in the desert regions to highs of 450 mm in the south along the Senegal River. During the last 30 years, the country has recorded two periods of drought, namely 1984-85 and 1991-92.

Mauritania is located along the northwestern coast of Africa and is bordered by the Atlantic Ocean to the west. The country's land mass covers the western portion of the Sahara Desert. Mauritania's land mass consists mainly of flat and barren desert landscape surfaces that are cross cut by three large NE-SW trending longitudinal dune fields. In the central part of the country, near Adrar and Tagant, several hills and mountains rise up to 915 metres above sea level (masl). In the desert regions, vegetation is sparse, consisting of various species of thorny trees (acacia, etc.) and grasses.

5.4 Local Resources and Infrastructure

The Tijirit project is located in a remote area deprived of resource and infrastructure. Nearest center is located in Nouakchott 300 km to the southwest by road. All supplies to the exploration works has to be transported on site.

A camp has been built on the mining concession 2480C2 that can fully accommodate close to 100 persons, with offices and dormitories. It is equipped with 2 main 200 and one 80 kva electrical power generators. Fresh water is gathered from the Tijirit spring 80 km to the southwest by tank truck. The camp is also equipped for local communication, satellite phones and VSAT station for internet. Sample storage, a sample preparation laboratory operated by SGS and working facilities are also available on site.

5.5 Surface Rights

To the knowledge of the author, the Tijirit project is not subjected to any surface rights. To the knowledge of the author, there are no significant factors or risks that may affect the access to the properties, the mining titles and the ability to perform exploration works on the properties, including Tijirit.

6. History

6.1 **Prior Ownership of the Property and Ownership Changes**

Initially, the Tijirit project consisting of permit 447B2 and 1117B2 originally belonged to Shield Mining from 2007 to 2010 who sold the rights to Gryphon which in turn sold the rights to Algold Resources (see Item 4).

Originally, the Tijirit exploration permit 447B2 covered 1000 km². It was first granted to Shield Mining Mauritania SA under RIM decree 2007-200 of November 20^t, 2007 for three-year period in the Guelb Enich - Inchiri area. It was renewed first time under decree 2010-256 of November 24, 2010. The permit was transferred to Gryphon Minerals Mauritania SA under decree 2013-876 of May 23, 2013. The permit was renewed second time to Gryphon under decree 2014-036 of April 20, 2014. Permit 447B2 expired after a three-year period in 2017. On June 12, 2017, Algold obtained from the Government of Mauritania a separate mining concession (2480C2) for a 306 km² portion of the 447B2 concession. The permit is valid for a period of 30 years.

The Tijirit-East exploration permit (1117B2) is adjacent to the east to permit 447B2 and covers 460 km². The permit was first granted to Shield Mining Mauritania SA under RIM decree 2010-278 on December 13, 2010 for three-year period in the Guelb-Enich - Inchiri area. It was transferred to Gryphon Minerals Mauritania SA under decree 2013-877 on May 23, 2013. The permit was first renewed for a three-year period under decree 2014-121 on August 2014 for three-year period. The permit expires after a 6-year period in 2020.

6.2 Regional Geological Studies

The Tijirit project area is located in the southwestern part of the Reguibat shield, a large north-trending Archean and Proterozoic ridge that occupy most of northern Mauritania, Figure 6-1. In the second half of the 20th century, a number of scholars and institution geologists carried out various studies and mapping resulting in the publication of scientific papers and maps of northern Mauritania (BRGM, 1968 and Choubert et Faure-Muret, 1971). Later doctoral dissertations on the metamorphic evolution of the southern Reguibat craton were produced and geological and metallogenic regional studies published (Potrel, 1994; Fabre, 2005, El Hadji, 2002).

Between 1962 and 1993, BRGM (Bureau de Recherches Géologiques et Minières) and later SNIM (Société Nationale Industrielle et Minière) carried out various exploration programs in northwestern Mauritania.

- Mission Pegmatite: 1960-1962 The mission targeted Be and Li located in the Tijirit pegmatite intrusive rocks, located north of the Tasiast mine.
- Mission nickel sulfuré: 1972 The mission focused on ultramafic units located in the Tasiast and Tijirit areas.

Mission Fer: 1973-1975 - SNIM targeted the Lebzénia Hills and Aouéouat greenstone belt.

BRGM and OMRG carried out prospecting and geological mapping in NW Mauritania Tasiast-Tijirit domain from 1992 to 1996 and produced the first 1:200 000 scale compilation of the Chami sheet. Later a wider geological compilation project lead by the BGS and funded by the World Bank produced a series of 1:200,000, 1:500,000 scale maps and reports on the geology and the metallogeny of the southern Mauritania including the SW Reguibat Shield and the Mauritanides (BGS 2004a and b) as shown on Figure 6-1.

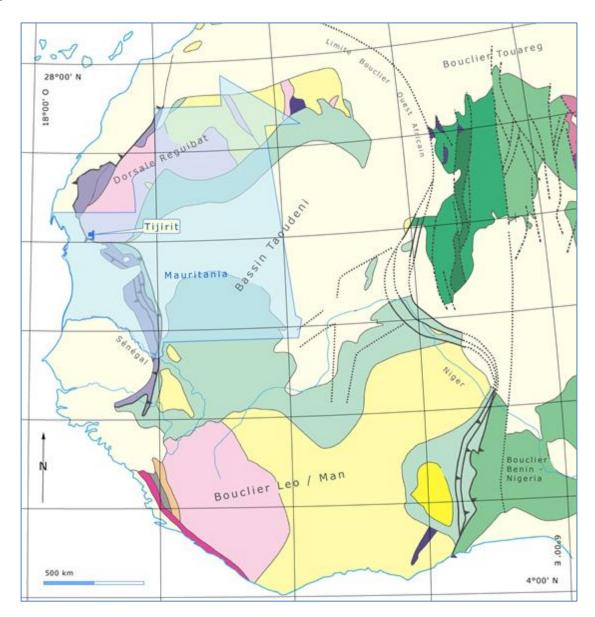


Figure 6-1: Geology Sketch of West Africa showing the Location of the Tijirit Project Southwest of the Reguibat Shield (After BGS 2004a)

6.3 Regional Geochemistry

Regional regolith, outcrop and soil sampling was conducted during the 1993-1996 BRGM-OMRG program and by the PRISM compilation program in the 2000's on the Chami map sheet. The samples were taken every kilometre along E-W lines separated by 4 or 5 km. A total of 1187 samples were taken on the Chami map sheet. Results have been mapped in the BGS (2004b) report on mineral potential of northern Mauritania.

6.4 Regional Geophysics

In Mauritania, regional airborne magnetic and radiometric surveys were funded by United Nations and by PRISM in the years 2000. Fugro and Sanders carried out the surveys at 500 m line spacing during PRISM I. The data was merged with older UN data to produce a coherent database. The data excludes most of the Taoudeni Basin. A gravity database also exists for Mauritania that excludes the Taoudeni Basin.

Regional 1:500 000 and 1:200 000 scale aeromagnetic and radiometric maps are available for NW Mauritania. Geophysical data accompany the 1:200 000 scale geological compilations carried out by BGS (20004a and b). Figure 6-2 shows the Chami sheet (#2015 in the 1:200,000 map grid of Mauritania) thorium signal, the major geological contacts and the Tijirit project area. The Tasiast mine units are trending to the NNW and show various volcanic and iron-rich sedimentary sequences, marked by a strong magnetic signal. The Tijirit project units are trending to the NNE and composed of mafic and ultramafic volcanics, metasediments, iron formations and meta-igneous rocks that give a higher Th signal on Figure 6-2.

Volcanic and sedimentary rocks are contrasting with much higher Th concentration granitoids (in red). It also contrasts with lower signal in quartz-feldspathic gneisses to the east and west of the map. The Tasiast mine is located across a major NNW-trending metasedimentary zone.

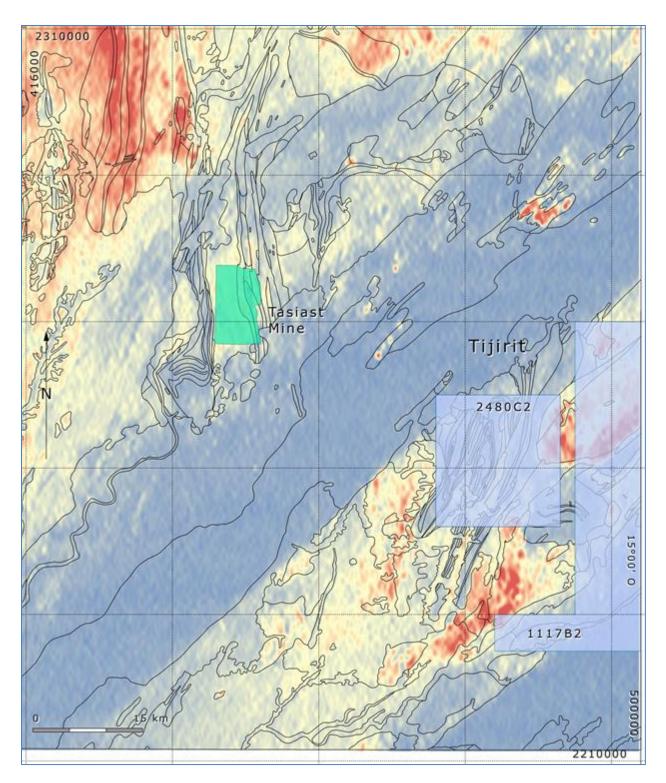


Figure 6-2: Radiometric Thorium Signal over the 1:200,000 Chami Map Sheet (#2015)

6.5 **Previous Estimate**

A previous estimate was carried out by SGS in 2017 with a technical report entitled "Tijirit Property NI 43-101 Technical Report with Resource Estimate Update, Tijirit, Mauritania" dated June 15, 2017. The previous estimate had two effective dates: March 17, 2017 for Eleonore zone and November 4, 2016 for Sophie and Lily zones.

Table 6-1 shows the previous base case estimate with a cut-off grade of 0.4 g/t inside pits and 1.4 g/t below pits except for Eleonore at a global COG of 1.5 g/t.

Zone	Classification	Au (g/t)	Tonnage (t)	Ounces
Sophie/Lily	Measured	1.03	73,000	2,420
Sophie/Lily	Indicated	1.04	1,226,000	41,010
Total	M+Ind	1.04	1,299,000	43,430
Sophie/Lily	Inferred	1.37	5,528,000	244,210

Table 6-1: Previous Estimate of June 2017 (base case)

Zone	Classification	(g/t)	(t)	Ounces
Eleonore	Inferred	4.18	2,665,000	357,920

Au

Tonnage

Zone	Classification	Au (g/t)	Tonnage (t)	Ounces
Total Eleonore, Sophie/Lily	Inferred	2.29	8,193,000	602,130

1. Effective dates for the resource is March 17, 2017 for Eleonore and November 4, 2016 for Sophie and Lily zones

2. The Independant QP for this Resources Statement is Yann Camus, ing at SGS Canada Inc

3. The mineral resources are presented at a 0.4 g/t Au COG in pits - 1.4 g/t Au COG under the pits except Eleonore at a global COG of 1.5 g/t Au

4. The resources are presented without dilution

5. Whittle pits have been used using a gold value of 1500 \$/oz

6. Mineral resources that are not mineral reserves have not demonstrated economic viability

7. Total may not correspond due to rounding

8. No economic evaluation of the resources have been produce

9. This resources estimates have been prepared according to CIM definition (2014)

10. Density used are between 2.0 and 3.0 depending on rock type and alteration based on measurements

11. Capping varies from 3.5 g/t to 45 g/t Au depending on extreme local grade

6.6 Past Production

A fair number of artisanal miners have started to congregate on the Tijirit project. By law, this activity is considered illegal. Apart from these activities, there is no known past production on this project.

7. Geological Setting and Mineralization

7.1 Regional Geology

The Tijirit project area lies in the southwestern portion of the Reguibat craton mostly underlain by Precambrian crystalline rocks, Figure 7-1. The craton forms a northeast-trending ridge limited to the NW by the Tindouf basin and to the SE by the Taoudeni basin. The southwestern half of Reguibat is underlain by rocks of Mesoarchean age (~2.9 to ~3.1 Ga), whereas the northeastern half are of Paleoproterozoic ages (~2.5 Ga). The basement is mostly composed of large granitic intrusions and moderate to high-grade metamorphic rocks including gneisses, amphibolites, volcanogenic schists and gneisses and metasediments. Metamorphic grade in the Reguibat generally increases from mid-greenschist in the southwest through to granulite grade in the northeast. Numerous north-trending elongate volcanosedimentary (v-s) belts occur over a broad area of the southwestern Reguibat, each marking major shear and crustal discontinuities. These belts are composed of metavolcanic, meta-plutonic and metasedimentary rocks ranging from ultramafic to felsic composition and likely represent the roots of volcanic arcs and inverted elongated sedimentary basins, Figure 7-1.

Most of the v-s belts are trending north and in contact with granitic to gabbroic intrusive rocks and gneissic suites. In the east, some belts show arcuate shapes possibly related to regional folding or small scale doming tectonic. The v-s belts consist of ultramafic to intermediate and felsic volcanic and volcanogenic sedimentary sequences with variably preserved iron formations and iron and quartz-rich metasediments, Table 7-1. Within the belts, rock successions have undergone mid greenschist to lower amphibolite grade metamorphism and multiple deformation events. Swarms of non-foliated mafic (basaltic) dikes dominantly striking NNE-SSW and E-W crosscut all other rocks in the district including undeformed pegmatite units, and are interpreted to be Proterozoic, possibly younger in age.

The major north-south structural fabric in the belts is clearly evident in both regional satellite images and geological maps for long strike distances. Steep foliations and localized isoclinals folds with north-south axial surface orientations are ubiquitous across the district and formed through a combination of strong early E-W shortening accompanied by sinistral shear, Figure 7-2 (BGS, 2004a). Structural investigations by Key et al. (2008) recognized tightening of folds, sheared folds, strike-slip and low- angle reverse faults that overprinted the north-south foliation. This event is interpreted to have occurred during later NW-SE compression.

More recent sub-tropical conditions in the Tertiary formed laterite profile over the eroded basement with thin ferricrete remnants. Elsewhere, the surface alteration has been eroded and re-deposited as reg and gravel. In the area, depth of oxidation ranges from 5 to 10 m or more. On the property the oxidation is limited to few metres at surface (Bolster, 2011).

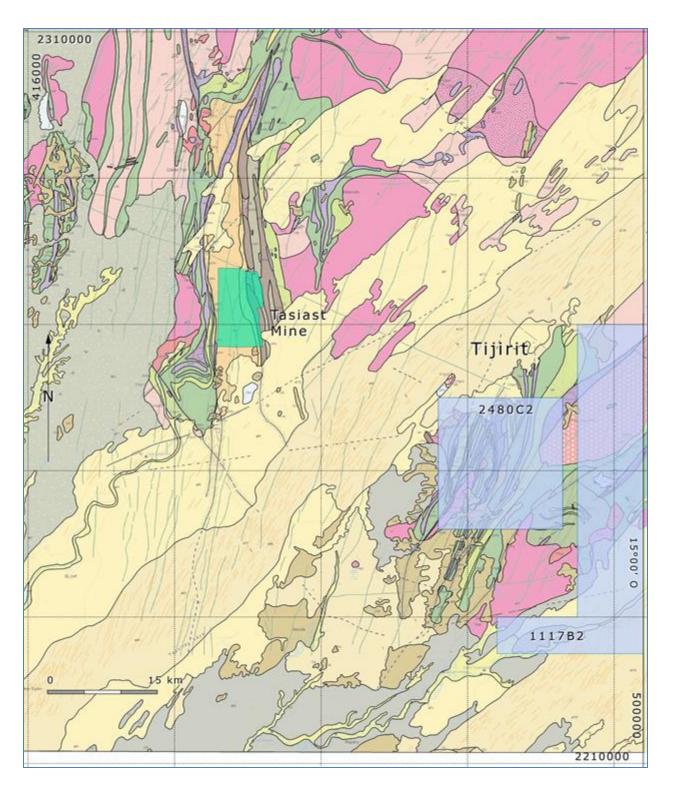


Figure 7-1: Geology of the 1:200,000 Chami Map Sheet Showing the Location of the Tijirit Project

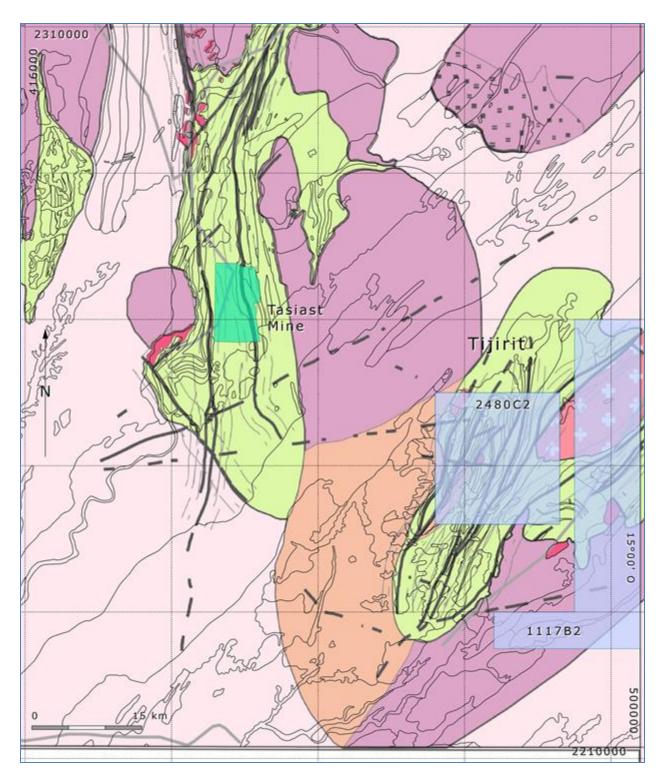


Figure 7-2: Major Shear Zones and Deformation Affecting the Tasiast-Tijirit Aouéouat Volcanic and Sedimentary Assemblages (BGS 2004a)

Descrit	Elevial energy also all laterals deviants and because
Recent	Fluvial gravel, sand, clay, silt, latosols, duricrust, sand dunes etc.
Cenozoic	Formation of lateritic soils and saprolite (older??)
Phanerozoic	Gabbro – dolerite dyke swarms (120-65 Ma?)
Unconformity	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	Unmetamorphosed quartzites and mica-schists (with intercalated
Middle to Lower Proterozoic (?)	amphibolites and orthogneiss)
Unconformity	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Archean	
Late intrusive rocks	Calc-alkaline granite-granodiorite, pegmatites, granitoids (~2.7 Ga) Gabbro – Diorite, dolerite dikes (age?)
Intrusive contact	
Volcano-Sedimentary pile (2.9 Ga)	Greywackes (epiclastics), mafic volcanics (basalts?) Banded iron/magnetite formations inter-layered with alternating garnetiferous schists, micaschists and tholeiites ultramafic, mafic and intermediate or felsic rocks
Basement (>2.9 Ga)	Granite gneiss, orthogneiss, migmatite complexes

Table 7-1: Interpreted Stratigraphy of the Aouéouat v-s Belt (after Maurin et al. 1996)

7.2 Mineral Potential

Since the discovery of gold soil anomalies on the Tijirit project in the 1994-1996 period, major exploration works carried out by Shield Mining and Gryphon Minerals showed gold mineralization outlined by soil anomalies, trenches, and RC and diamond drilling. Most of gold soil anomalies and trench and drill intersections were discovered along or on either side of contact zones between metasedimentary rocks, serpentinites and porphyritic granitoids. It is distributed in zones measuring up to 1.5 x 4 km in four main

areas namely Sophie I & II, Sophie III, Lily and Eleonore and 3 minor zones located more or less on strike.

The Tasiast world-class deposit is located approximately 40 km NW Tijirit area, the mineralization zones are not on strike but rather sub parallel, Figure 7-2. The Tasiast and Tijirit mineralized zones are separated by the Azefal dune bar and may be separated by regional faulting and large folding. The actual data of gold mineralization of the Tijirit project added to its location in a relatively close environment capable of producing a world-class multi-million-ounce deposit (Tasiast) makes it a high potential area.

7.3 Property Geology

The Tijirit project is located in the southwestern Reguibat shield in granite greenstone terrain of the Aouéouat Belt. The project is located on Sebkhet Nich volcano-sedimentary (v-s) local belt, Figure 6-1. The sequences located in the centre west of the project are mainly composed of NNE-trending and regionally folded ultramafic, mafic to intermediate and felsic volcanics interstratified with various metasedimentary units and banded iron or iron-rich formations. The various NNE-trending contacts are locally tectonized and show faults and shear. To the west, the v-s sequence is in contact with syn-tectonic tonalitic granitoids and main porphyritic quartz-feldspar granitoid. The main belt is intruded by syntectonic tonalitic granitoids and minor late-tectonic intruding granodiorite. The centre of the project is underlain mainly by basalts and associated gabbro sills and some ultramafic rocks further to the east. The v-s sequence is bordered by quartz-feldspathic orthogneisses to the south, in contact with porphyritic granitoids to the west and intruded by somewhat more felsic granitoids to the northeast, Figure 7-1, Figure 7-2. The project shows a fair coverage of regolith, sand and minor laterite ferricrete remnants. A study on the nature of the various regolith and local laterite cover using remote sensing was carried out by Bolster (2011).

7.4 Mineralization

On Tijirit, gold mineralization is related to deformation zones affecting the iron formations, various metasedimentary sequences and intermediate and mafic metavolcanic and meta-igneous rocks. Gold is locally visible, mostly as native medium to small grain located in quartz ± carbonate veins and silicified zones within highly schistozed metabasites and locally associated with sulphides and metasediments or with quartz veins and altered zones near meta-igneous rocks.

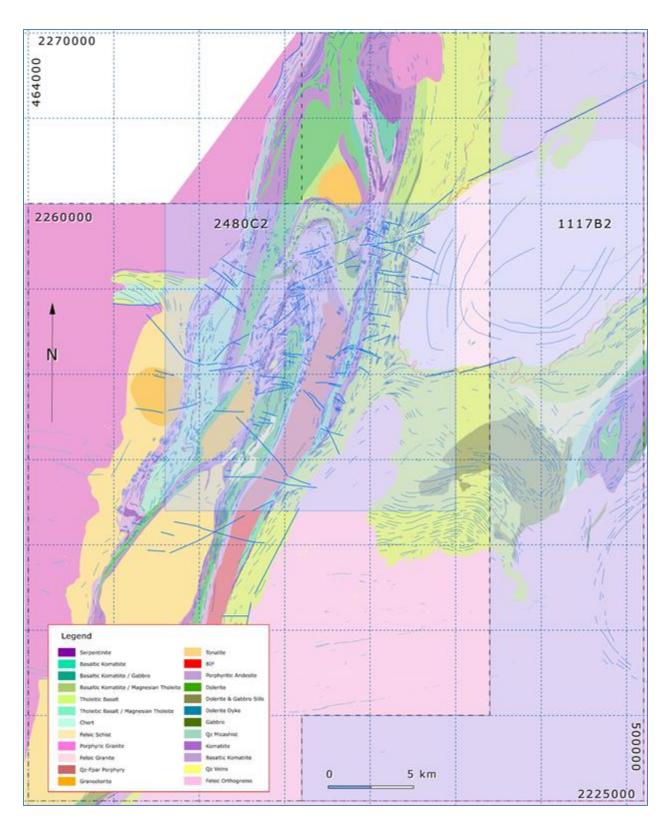
The Tijirit mineralization can be classified according to the following:

Sophie I, II - gold is related to quartz-carbonate-sulfide veining located in altered, sheared and folded zone within or near contacts between BIF (iron formation), metabasic and metasedimentary sequences.

Sophie III - gold is located in the north limb of a regional fold in NE-trending sheared contact between metavolcanics and metasediments.

Lily - gold appear as fine grains located in widespread quartz-carbonate-sulfide veinlets associated to various zones, showing disseminated pyrrhotite and pyrite, alteration and shear and transposition deformation mostly in metasediments, meta-igneous and metabasic NE-trending sequences.

Eleonore¹ - medium to fine grained gold is seen in various size quartz-carbonate-sulfide veining associated with shear and alteration zones within or in contact zones between meta-igneous, metasediments and metabasic rocks.


Salma - gold is related to late-tectonic quartz veins locally showing sulfides and host-rock alteration. Gold is concentrated in quartz veins trending north, dipping west and located either at the contact between the metabasite sequences and the granite, 250 or 600 m east of the contact in identical veins or within the metabasite sequence, 1 km west of the contact with similar type of quartz veins. The Salma structure can be followed over a 10-km strike.

At present, different types of gold mineralisation have been identified at the Tijirit project. It appears that gold mineralization is not always related to the iron formations but as in Tasiast the presence of iron-rich rocks in the vicinity or lithological density contrasts could have play a structural and/or mechanical role in the precipitation of gold. It is carried through fluid vector circulation resulting in potassic alteration and quartz veins or stockworks or pervasive silica and/or carbonate and sulphide-rich precipitation.

Figure 7-3 shows the major metavolcanic and sedimentary successions of the Tijirit project with interpreted faults and shears separating the various local magmatic and v-s domains. The map outlines the NNE-trending regional tight folds with parallel traces and shears or faults.

¹ The name of this zone has been modified to Eleanor in various text, and thus for clarity, the reference has been made to refer this zone as Eleonore.

Figure 7-3: Geological Map of the Tijirit Project with Interpreted Structures. After Gryphon Geological Map (2015)

SGS Canada Inc.

8. Deposit Types

Tijirit project is located approximately 40 km southeast of the Tasiast gold deposit. The Tijirit mineralized zones are trending to the NNE and are rather sub-parallel to the Tasiast north-trending deposit, Figure 9-1. The style of gold mineralization varies on the Tijirit project; however, two major types have been identified as unique: Eleonore-type mineralization and BIFs type. For the purpose of this section and given the information on the mineralization provided above, one assumes that Tijirit and Tasiast show similarities in the type of gold mineralization. One also takes in account differences in the lithologies and the tectonic contexts but with iron formations as common denominator.

Tasiast and Tijirit can be classified in part as shear-hosted and / or non-stratiform iron-formation (BIF) hosted deposit in the sense of Kerswill (1993) classification with some differences, since the mineralization are related primarily to deformation whether sulphides are present or not and the iron formation contains a limited amount of primary sulphides outside deformation zones. The Eleonore zone is comprised of a predominantly westerly-dipping metasediment and volcanic sequence with upper greenschist to lower amphibolite metamorphic assemblages. Gold is hosted in quartz veins striking parallel to local foliation and the regional trends. It is believed to be emplaced relatively early in the tectonic history with veins often displaying a sheeted texture distinguishable from later crosscutting quartz veins. Several families of east-west and north-east trending brittle faults are believed to crosscut the foliation and offset geological units and mineralization. Initial results suggest that the area is extremely rich with coarse, nugget-type gold.

The host volcano-sedimentary Chami sequences are older than 2,933 Ma, according to BGS (2004) and may be as old as 3.2 Ga, which makes it much older than any known Archean mesothermal gold deposit, although the age of the deformation and the sulphide and gold precipitation is not known and may be much younger. The Salma granite (dated at Bir Igueni) is 2,933±16 Ma - mineralisation in Salma post dates this intrusion.

The Tasiast deposit shows similarity with Archean greenstone gold deposits classified as mesothermal where deformed mineralized zones, either quartz or quartz-carbonate vein, stockworks or silicification are hosted in low to medium metamorphic grade terrains in in variously deformed supracrustal rocks. Deposits are characterized by high Au/Ag ratios and a carbonate host rock alteration. Low grade mineralization can be extended but high-grade lodes are much more reduced in dimension.

As for Tasiast, gold mineralization is hosted in Archean iron-rich sedimentary sequences and felsic sedimentary and/or volcanic rocks that have been deformed and metamorphosed at greenschist and lower amphibolite grade. Mineralization are both structurally and lithologically controlled and show mesothermal characteristics. The mineralized lithological sequences can be defined as follow:

- epiclastic sediments and greywackes;
- oxide-silicate and magnetite quartzite (grunerite-cummingtonite);
- garnetiferous chlorite schist (metasediments);
- biotite chlorite schist (garnet);

- dacite, fine to medium grained overlain by an aphanitic pyrite/pyrrhotite-rich interval at the upper contact interpreted as a chert;
- late cross-cutting mafic (gabbro) dykes.

It contains gold in various shapes and habits as:

- isolated grains in quartz veins, commonly near lithological contacts;
- isolated grains near fragments of host rock;
- closely associated with pyrrhotite: generally, against or at the periphery and occasionally as inclusion;
- associated with pyrite;
- in fractures within garnets crystals;
- seldom associated with arsenopyrite;
- rare occurrence within carbonate veins.

As another example in the area, gold is documented at surface on the Chami sheet 50 km NW of the Tasiast deposit. The iron-rich v-s Hadeibt Agheyâne belt has surface gold showings that were identified by Xstrata during their iron exploration program's in the recent past. It is trending NNW parallel to the Tasiast mineralized sequences and show similar orientation and intensity of the magnetic signature.

9. Exploration

Between April and June 2016, Algold uncovered a series of quartz veins in trenches and pits on the Eleonore zone. These findings could possibly represent a large stockwork enclosed within a major shear zone, striking for more than 10 km in a north-northeast direction. Based on these new findings as well as on previous work, Algold strongly believes that this area hosts a high-grade gold deposit. This is a completely new high-grade gold occurrence in Mauritania. Please refer to Item 10 for the ongoing drilling program.

All past exploration work carried out on the project is detailed below.

From 1993 to 2007

Based on geological mapping and previous results, exploration programs funded by Fonds de Développement Européen (EDF Project) took place between 1993 and 1996 and was contracted by BRGM and Office Mauritanien de Recherches Géologiques (OMRG). The program focused on the Chami and Ahmeyim 1:200,000 scale sheets and consisted in reconnaissance geological mapping and sampling. It identified significant gold anomalies in the Tasiast area.

Although the Tasiast deposit is located about 40 km to the northwest of the Tijirit project, much knowledge can be granted by studying the research history that lead to the discovery and subsequently the exploitation of the Tasiast gold mine.

In the mid 1990's, La Source Développement SA, a French Mining and Exploration company was granted the right to the Tasiast and Tasiast Sud licenses. From 1996 to early 2000, La Source (and later on Normandy-La Source, NLSD) completed at regional and target scale soil geochemistry, geological mapping, airborne and ground geophysics, trenching and mapping, at a number of locations within the licenses, but focusing on the Tasiast deposit which was discovered in late 1997. NLSD completed a major exploration program within the Tasiast Permit Area, including some 32,000 m of RC drilling and 3,300 m of diamond drilling. An extensive amount of work was completed during the program.

A soil and stream sampling program in 1993-1994 by BRGM in the Tasiast-Tijirit area lead to the discovery of major anomalies on the actual Tijirit project between 91 and 1000 ppb Au.

In 2000, following a 94 to 96 European Development Fund regional soil survey a JV between NLSD and BRGM lead to a surface geology, soils and rock sampling program in "The Tijirit" area on the Ahmeyim map sheet located 100 km NE of the Algold's Tijirit project. It is mainly composed of granitoids and volcano-sedimentary assemblages.

In the early 2000's an important geological mapping and compilation program was carried out in western Mauritania and funded by the World Bank and Projet de Renforcement Institutionel du Secteur Minier (PRISM). The work was contracted by the British Geological Survey (BGS) and lead to the production of twelve 1: 200 000 map sheet and related geological and metallogenic studies (BGS 2004). In 2005 and 2006 JICA (Japan International Cooperation Agency) produced various synthetic studies on northern Mauritania gold potential including Tasiast and Tijirit. In 2007, following PRISM II program, the USGS

produced a variety of short studies on metallogeny of precious and base metals and geology, geophysics and remote sensing of various locations in Mauritania.

Since 2007

In 2008, Shield Mining Mauritania (SMM) followed up on the 1993-1994 BRGM gold anomaly discovery on Tijirit and carried out a more detailed sampling and a geological survey. The analysis of 3130 samples and geological surface studies lead to the discovery of major anomalous zones confirming the BRGM gold anomalies. Four (4) different zones showed 135, 45, 68 and 100 soil samples >60 ppb Au. In 2009, Shield carried out trenches, small soil sampling grids and rock sampling on the anomalous zones already outlined by previous works. It was followed by a 1:2000 scale geological mapping, an RC drilling campaign and a major regional soil sampling program. In 2010, a supplementary RC drill campaign and some soil sampling were carried out. In 2011, a diamond drill program, trenches, soil sampling and detail geological surveys were carried out on the Lily, Sophie, Eleonore and Nancy prospects and a total of 14325 soil samples were taken on the 447B2 permit. In 2012, 17189 soil samples were taken on the 447B2 permits. Two trenches adding to 446 m were sampled on the Sophie III prospect and 75 RC holes were drilled and samples adding to 11910 m on the Lily, Eleonore and Sophie III prospects of the 447B2 permit. An extended auger sampling program was also completed.

Both the 447B2 and 1117B2 permit were transferred to Gryphon Minerals Mauritania (GMM) in May 2013. In the same year, GMM carried out semi regional and detail mapping on both 447 and 1117 permits, local sampling and RC drill result compilation on 447 permit.

N.B. The following Table 9-1 describes the data produced during semi regional and detail exploration geochemistry, geology and geophysical work carried out on permits 447B2 and 1117B2 since 2008 either done by Algold, Shield Mining or Gryphon Minerals. Information is taken from unpublished annual reports.

Property	Soils	Trenches		Rocks	Auger	PP	Mag & Rad	
		nbr	m			km	km²	
Tijirit	38,107			1,447	1,300	16.2	1,917.6	
1117B2								
Eleonore	1,037	56	5,183					
Lily		16	6,594			4.8		
Nancy	31	8	650					
Sophie		112	6,594					
Sophie I						2.8		
Sophie II		13	768			5.4		
Sophie III						3.2		
Tijirit South		5	2,810					
Total Tijirit		210	17,007					

Table 9-1	: Tijirit Exploration Work Statistics since 2007
-----------	--

9.1 Geochemistry

Soils

The Tijirit soil database contains 37,039 samples analyzed for gold and 7267 analyzed by XRF, including Ag, Cu, Pb, Zn, etc. In 2017, a new sampling campaign was carried out comprising 1068 soil samples. At the time of writing this report, the results of the analysis received are partial because the majority of the samples have not yet been analyzed. Therefore, the statistics below remain unchanged since the previous report. The data shows an Au mean of 15 ppb, a median of 8 ppb and a standard deviation of 37 ppb. None of the elements analyzed by XRF show a correlation with Au. A summary of the soil population shows:

90th percentile...... 30 ppb Au 95th......50 ppb Au 98th......91 ppb Au

A threshold of 51 ppb Au was chosen to show the anomalous areas on Tijirit and in normal centered distribution corresponds to the mean (15 ppb) + 1σ (standard deviation), in Figure 9-1. It reveals the presence of soil anomalies related to NNE-trending shearing separating or crosscutting various Archean metasedimentary, mafic, ultramafic and meta-igneous units (see geology section below). A compilation of the soils shows distinct concentration of anomalous values in four main area namely Sophie I, II & III, Lily, Nancy and Eleonore, in Figure 9-2. It also shows NNE and SSW extensions of many anomalies along deformation zones and many smaller or less concentrated anomalous areas of interest along more or less sheared meta-igneous and volcanic or sedimentary contacts (Bolster, 2011).

Trenches

In the past, a total of 197 trenches have been excavated for a total of close to 17 km on 5 anomalous areas following the soil results. The trenches are normally 1 to 2 m deep and have been sampled and analyzed every 2 metres. The sixth area in the south Tijirit is much less anomalous than Sophie, Lily and Eleonore areas. Figure 9-3 shows 25 results above 1 g/t Au (1 ppm) mostly concentrated on soil anomalies concentrated at lithological contacts.

In 2017, Algold completed 13 new trenches in the Sophie II/III area for a total of 768 m and 78 channel samples for a total of 170.47 m. The trenches are approximately 2 m deep and have been sampled at intervals ranging from 1 to 2 m. The channel samples were carried out at various depths below surface in artisanal workings. Channel sample results are pending.

Rock Samples

2009 - 2012 – There were 989 surface rock samples collected all over both 447 and 1117 permits with a higher concentration on the soil anomaly areas of Sophie, Lily and Eleonore, as shown in Figure 9-4. Grades vary from 1.7 to 38.9 g/t Au. Of the 16 samples showing Au > 1 ppb Au, 11 richest samples are

located in Eleonore along deformational zones and lithological contacts. There are 10 samples that are quartz veins and one show silicification of a Fe-rich carbonate rock.

<u>2016 - 2017</u> – Algold analyzed 704 samples collected mainly from the mineralized zones and the southern and northern extensions of Eleonore East. At the time of writing this report, the results of 2 samples were pending. As shown in Figure 9-4, 225 samples show Au > 1 g/t Au varying from 1.04 to 102.5 g/t Au. There are 38 samples that show grades above 30 g/t Au mainly concentrated in the Salma and Eleonore East zones and further to the SSW suggesting the presence of a new high-grade gold corridor trending to the NNE and parallel to the main tectonic trends at the contact with a syn-tectonic granitoid intrusion, 2.5 km east of the Eleonore mineralized zone.

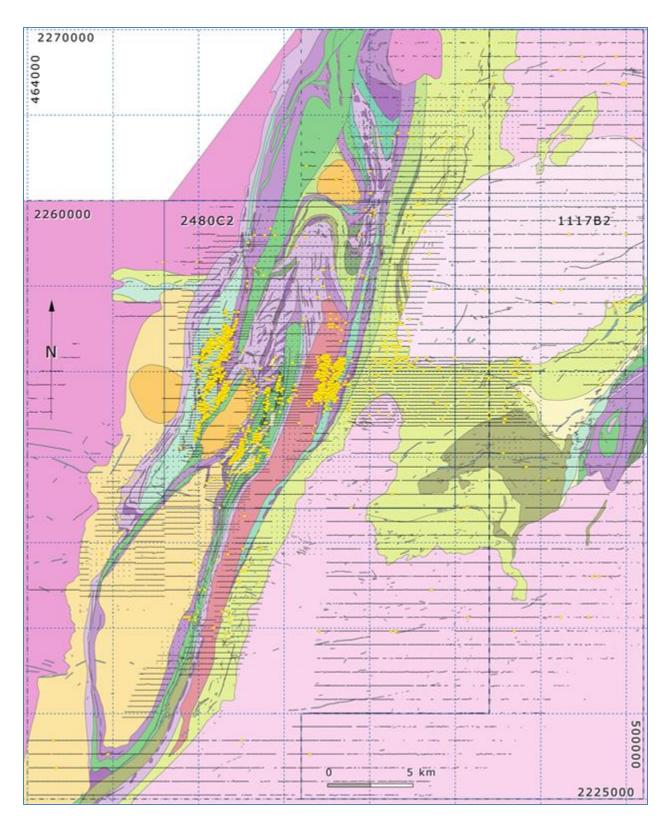


Figure 9-1: Distribution of 37,039 Soil Analyses and the >51 ppb Au Threshold (Big Yellow Symbols) Underlain by Tijirit Geology

SGS Canada Inc.

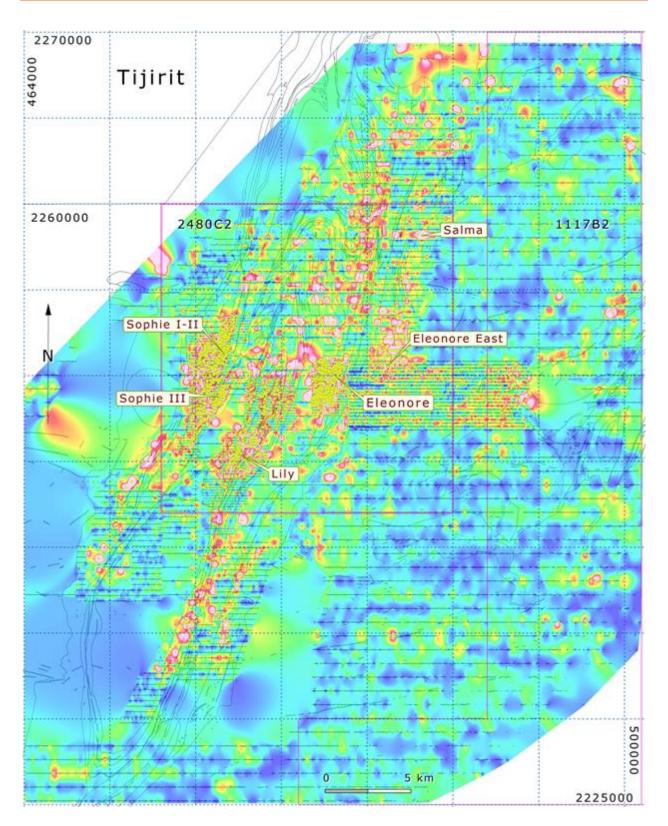


Figure 9-2: Distribution of Soil Analyses >51 ppb Au Threshold (Blue Symbols) Underlain by Total Soil Interpolation Map

SGS Canada Inc.

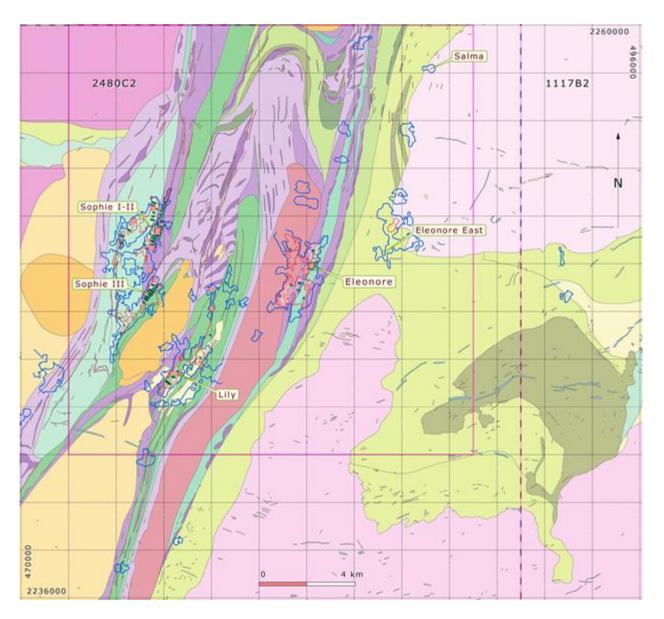


Figure 9-3: Tijirit Close-Up Distribution of Trenches, Trench Samples and Results above 1 g/t Au (Pink Symbols)

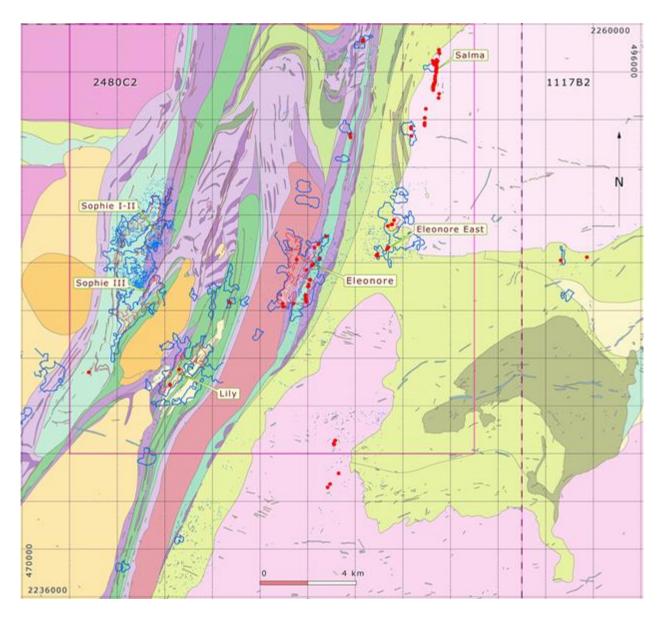


Figure 9-4: Tijirit Soil Anomaly Contours for 30, 50 and 100 ppb Au and the Distribution of Surface Samples (blue) and Samples Above 1 g/t Au as Red Symbols. Some samples (7) in the Salma Zone are Above 30 g/t Au

Auger drill holes

A 1300 drill auger holes program was carried out in 2012 in the center and southwestern Tijirit. 284 holes were done on the Eleonore zone and the rest in the southern 447B2 permit at a mean sampling depth of 6 m. The results show only one analysis at 281 ppb Au in the southwestern part of Figure 9-5. No results match the anomalous Eleonore soil values.

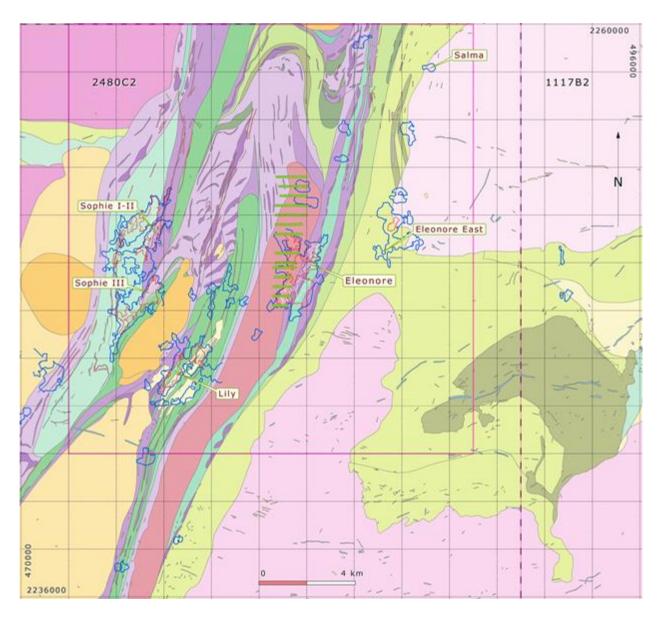


Figure 9-5: Tijirit Distribution of Auger Drill hole with a Mean Depth of 6 m

9.2 Satellite Imagery

Ikonos and 50 cm WorldView Images

One-metre resolution Ikonos satellite images were acquired on the project covering 120 km² and centered on the main mineralized prospects, Sophie, Eleonore, etc. It includes various visible and infrared band images. A WorldView mosaic was also acquired at 50 cm resolution and covers the main prospect area on permit 447B2. Bolster (2011) carried out a detail study using WorldView images. Figure 9-6 shows a structural interpretation by Davies (2012) using the 50-cm mosaic and the detail of the tight folding and shearing of the 447B2 permit involving Archean iron-rich metasediments, metabasites, meta-igneous and ultramafic rocks and the location of the main Tijirit gold prospects.

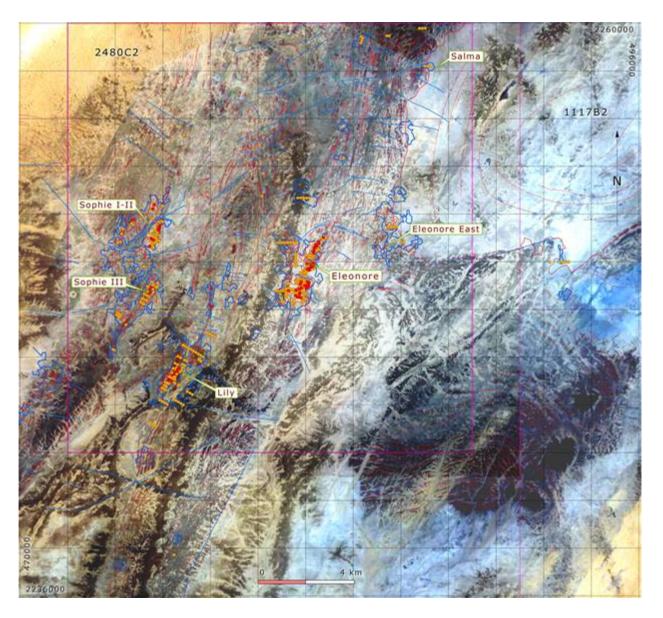


Figure 9-6: Tijirit 50 cm Hi-Res Satellite Image with Structural Interpretation, 51 ppb Soil Anomalies, RC and Core Drilling Distribution. After Davies (2012)

9.3 Geophysics

Airborne Magnetic & Radiometric Survey

An airborne magnetic and radiometric survey was commissioned on the Tijirit project by Gryphon Minerals. The survey was flown with 200 m line spacing oriented E-W and 1,000 m tie line spacing, oriented N-S. Various maps including magnetic vertical derivative and analytical signal and U-Th-K where produced by BIG-Consulting.

Figure 9-7 shows structural interpretation and the distribution of the various prospects with soil 51 ppb anomalies, RC and core drill holes. It shows that each of the main prospects are located on specific portion of the NNE-trending deformation pattern. It is revealed by magnetic highs due to magnetite presence in iron formation associated with some of the mineralization. For its part, the thorium radiometric signal gives information on the compositional variation of meta-igneous rocks involved with the mineralization, Figure 9-8. It shows compositional variations within the tonalite unit of the Tijirit South area and a marked signal of the quartz porphyry elongated unit involved in the deformation and mineralization. It also shows similarities between the felsic granite and the orthogneisses mapped as separate units. See detailed geological map in the next section.

Induced Polarization

In 2008, Sagax Afrique S.A. carried out 16.2 km of dipole-dipole (dp-dp) induced polarisation lines in four distinct locations on the Tijirit project, namely Sophie I & II, III, Lily and Eleonore. Figure 9-9 shows the distribution of the dp-dp lines on the various prospects.

Eleonore - Only one small chargeability target was established by Shield Mining on the northernmost line and most of the IP data is said to be unusable (SGS, 2008).

Lily - Two NNE-trending elongated and one small chargeability targets were established west of the main soil anomaly. A low current penetration was documented in the eastern third of the survey.

Sophie III - An elongated NE-trending chargeability anomaly has been detected and a target was established parallel to the main deformation and coincides with the soil anomaly. Two minor targets were also proposed just to the east, but one considered that the 45° angle between the survey and the schistosity makes a line correlation more hazardous.

Sophie I & II - Sophie shows high resistive zone to the west coincident with the soil anomaly and quartzrich metasediment unit. On Sophie II, only a small high resistive portion to the SW corresponds to the contact zone with intermediate to mafic volcanics to the east. Most of Sophie I and II show NNE-trending low resistivity areas coincident with volcanic rock. Sophie II shows a high chargeability zone coincident with the soil anomaly and the contact zone between metasediments and metavolcanic rocks. Both high chargeability and low resistivity are considered disseminated sulphide IP signature and are regarded as priority targets, Figure 9-9.

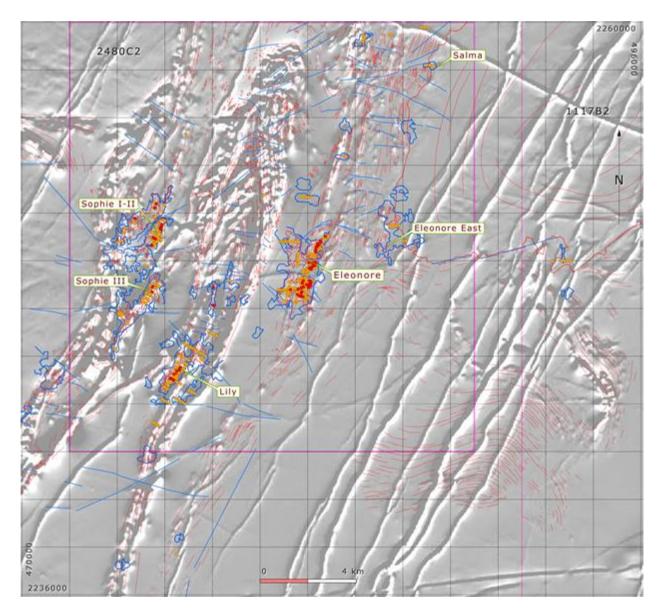


Figure 9-7: Magnetic Vertical Derivative Signal with Structural Interpretation, 51 ppb Soil Contours (Yellow), Drill Sites and Target Areas

Page 45

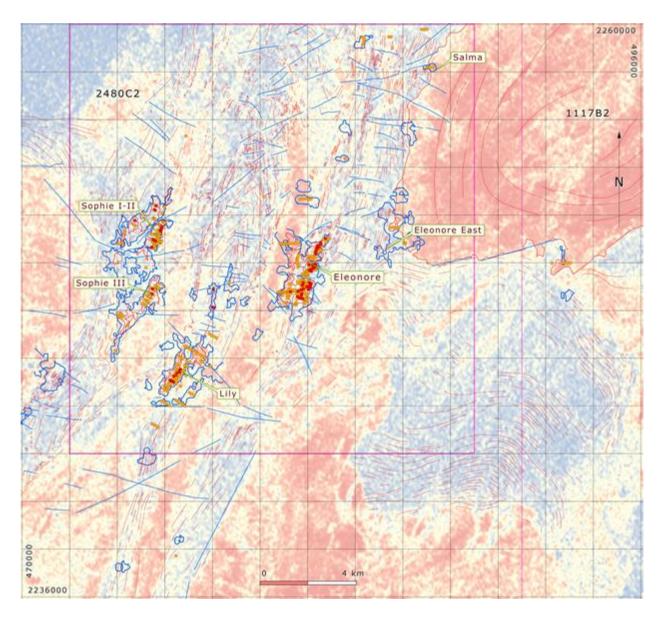


Figure 9-8: Thorium Radiometric Signal with Structural Interpretation, Drill Sites and Target Areas

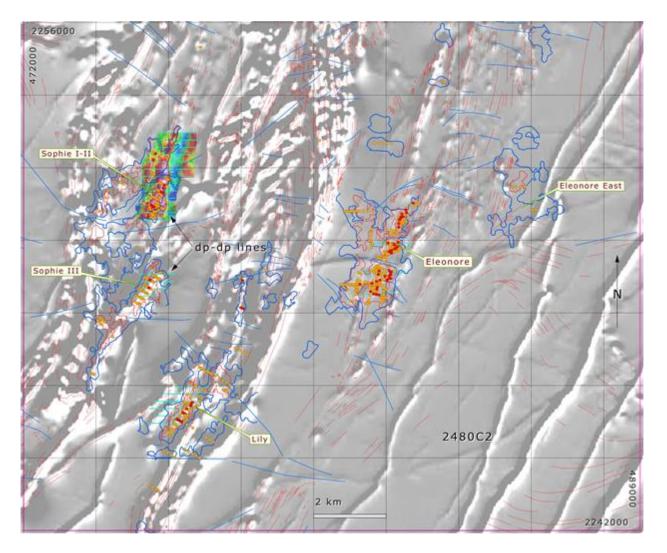


Figure 9-9: Prospect IP dp-dp Lines showing 51 ppb Anomaly Contours (yellow) and RC and Core Drill Sites

9.4 Exploration of Salma and Eleonore East

The Salma-Eleonore East mineralized zone extends for 8,5 km north to south and is located 3 km east of the main Eleonore mineralized zone on the 2480C2 Tijirit project, Figure 9-10 and Figure 9-11.

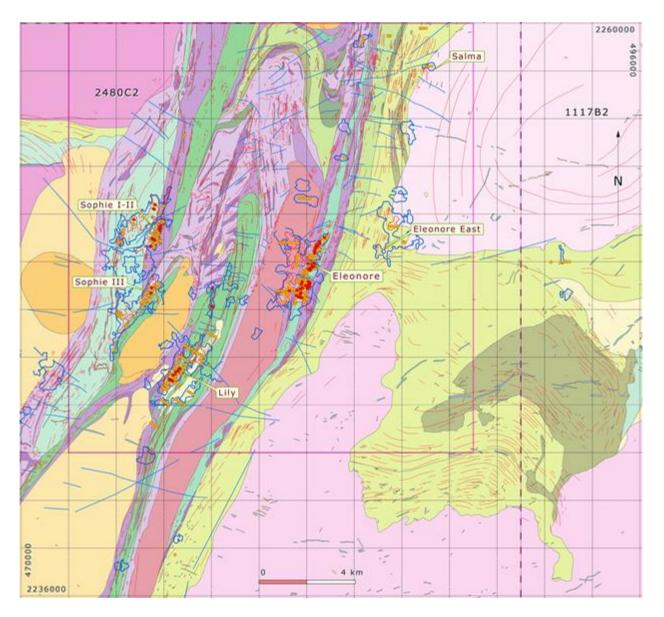


Figure 9-10: Location of the Salma-Eleonore-East area, 3 km east of the main mineralized Eleonore zone. Geology after Davies (2012).

The area was previously sampled for soil and surface rock geochemistry. The area was also mapped at regional scale and locally drilled following soil anomalies or mineralized quartz veins. Mineralized intersections have been described in RC holes of the Tijirit-East area, Figure 9-11.

The area is being currently worked by Algold where geological mapping, surface and channel sampling and drilling is being conducted.

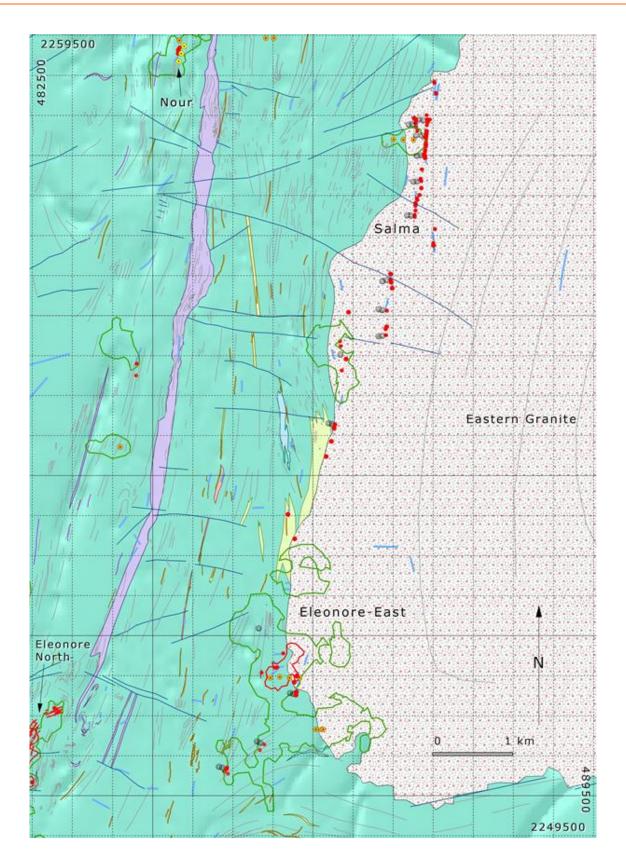


Figure 9-11: Geology of the Salma zone showing the limit of the eastern granite in contact with underlying metabasite sequences (green-blue).

SGS Canada Inc.

The latter show conformable intercalated serpentinites (purple), porphyritic gabbro (pale blue), metaandesite concentrated along the contact (green) and minor porphyry, meta-arenite, BIF and felsic dykes. The area shows mostly NNE-trending schistosity and folds. The contact zone with the granite is highly deformed and shows conformable sheared quartz veins. See text for details. 30 and 50 ppb soil contours in green and red, surface chip and channel samples > 1 g/t Au as red dots, previous RC drill holes as orange dots, Algold RC drilling in Nour as yellow symbols, RC drilling in the Salma contact zone as open symbols.

The Salma zone is oriented north-south and located at the limit between the Eastern Granite and the main mafic volcanic assemblages that underlie most of the area, Figure 9-11. The metabasalt sequences show conformable metre to hectometre size intercalation of serpentinite, meta-andesite concentrated along the western contact, porphyritic metagabbro and minor bands of granite porphyry, metaquartzite or meta-arenite, iron formation (BIF) and felsic dykes. Locally, granite porphyry is associated with meta-arenites and iron formation. The whole area shows conformable late tectonic and post-tectonic quartz veins locally oriented east or northeast.

The area is affected by the main north-northeast-trending schistosity. It is locally trending east in the southern portion of the map and locally shows various scale folding, the contact with the Eastern Granite is highly deformed, mostly dipping to the west and shows kaolin-rich white and limonite-rich brown oxidation corresponding to granite and basalt alteration.

As in other mineralized zones on the Tijirit project, gold is related to late-tectonic quartz veins locally showing sulfides and host-rock alteration. In the Salma zone, gold is concentrated in quartz veins trending north, dipping west and located either at the contact between the metabasite sequences and the granite, 250 or 600 m east of the contact in identical veins or within the metabasite sequence, 1 km west of the contact with similar type of quartz veins.

RC drilling by the previous operator in 2012 showed the following mineralized intersections:

- 1 km east of the Nour zone, northwest of the map area, 12RC078,
- at the granite contact in the Salma zone, 12RC141-142,
- at the granite contact and 250 m to the east in the Eleonore-East zone, 12RC134-137 and
- at the granite contact, 750 m southeast of the Eleonore-East zone, 12RC166-167, Table 9-2, Figure 9-11.

Holeld	East	North	Zone	from	to	m	Au g/t
12TRC078	485513	2259467	Nour	0	1	1	0.62
12TRC134	485808	2251476	Eleonore-East	41	45	4	2.07
12TRC135	485674	2251473	Eleonore-East	54	55	1	0.77
12TRC136	485557	2251485	Eleonore-East	47	52	5	0.70
12TRC136	485548	2251485	Eleonore-East	55	71	16	0.74
12TRC137	485436	2251474	Eleonore-East	52	54	2	3.16
12TRC141	487149	2258198	Salma	165	166	1	2.92
12TRC142	487021	2258199	Salma	168	169	1	11.75
12TRC166	486091	2250829	Southeast	81	85	4	1.52
12TRC167	486117	2250830	Southeast	14	15	1	16.95

Table 9-2: 2012 RC Drilling Mineralized intersections in the Salma map area.

For the 10 drillholes from Gryphon presented in Table 9-2, they were never used in any resources calculations. The QAQC data has been verified in the maiden report dated August 2016, but the quantity of QAQC data specifically for this area is low. The results of the QAQC in the maiden report were satisfactory, and as the overall Gryphon database there is no reason to believe that there is a specific problem. New drilling and future work will validate that the data from these 10 drillholes are reliable.

Surface chip samples revealed mineralized quartz in the Nour zone, along the Salma granite contact and within the metabasite sequence. Following positive results, Algold proceeded with channel sampling of all accessible artisanal diggings along the granite contact, Figure 9-11. Gold assaying revealed 34 samples above 1 g/t Au over 186 samples with a maximum of 42 g/t.

Following positive surface sampling in the Nour zone, Algold proceeded with three RC holes in the area but failed to intersect significant mineralization.

Following positive channel sampling in the Salma contact zone, Algold carried out 28 RC drill holes in February 2018 mostly trending east with EOH between 60 and 120 m. Results are pending.

9.5 Dispersion of Gold in the Eleonore laterites - Implications for Exploration

Understanding the alteration profile and the gold dispersion of the Eleonore zone are essential for the exploration follow-up especially for the western portion where a thick ferricrete is observed.

The mineralized Eleonore zone in the Tijirit permit is located in northwest Mauritania in a desert area where rain does not reach 100 mm / year. Now the alteration profile shows a marked variation in the various climates affecting the area and without being able to date it, the climate has been and for a long time in a humid tropical zone.

The profile shows a transition toward a more desert zone at the end of the laterite and ferricrete process and the beginning of the surface and saprolite erosion. In Tijirit, the absence of mottle clay zone underneath the ferricrete suggests that an erosion period may have preceded the last phase of ferricrete formation.



Figure 9-12: Distribution of the ferricrete on the Eleonore zone, with soil anomalies (30, 50, 100 & 200 ppb Au), drill holes (yellow symbols), the projection of mineralized zones (green lines), the faults (blue lines) and the structural trends (gray lines).

It is fair to say that the establishment of the laterite profile, the understanding of gold dispersion and the application of a genetic model should lead the exploration works.

Mineralized Zone Modelling

It was noted above that the soils of Eleonore east zone are residual with local abundant clay. Soils are believed to be in situ with the exception of transported sand and gravel in identified wadi (streams). It shows more or less concentric gold anomalies between 30 and 200 ppb Au and more with a notable continuity. According to the drilling, it corresponds to major underlying mineralization. It should be noted that the limits of the mineralized zones are schematic, and the host rock may contain various mineralization zones outside the proposed limits.

On the west side of Eleonore, the pisolithic ferricrete is considered in situ and also contains more or less concentric and continuous gold anomalies.

Previous Works

The Eleonore west zone was already worked by previous operators, using soil geochemistry described above and auger and reverse circulation (RC) drilling.

Auger - Auger drill sections were carried out on all the Eleonore western zone at 50 x 400 m grid. The data show that the analyzed samples were taken at various depths and that no laterite profile was established. No results could compare to the soil geochemistry.

RC drilling - The RC drill section located immediately south of the Eln section on Figure 9-12 did not reveal notable gold intersection on Eleonore west.

The drill section located on section Els of Figure 9-12 revealed a mineralized zone sketched on Figure 9-13. It is located 500 m west of the main Els zone, underneath the 100-ppb anomaly. Furthermore, the drilling revealed a narrow-mineralized zone 45 m across located immediately east of the main zone that caused the 30 and 50 ppb overlying soil anomalies.

Projected Mineralized Zones

The application of the dispersion standard model in soils or ferricrete with collapse of the saprolite and in situ dispersion of gold-bearing quartz veins at surface shows the presence of mineralized zones at depth more or less centered on the 50 and 100 ppb Au anomalies. Thus, 3 sections were modelled on the Eleonore zone, Figure 9-12, with 5 mineralized zones detected by drilling, Figure 9-13, Figure 9-14 and Figure 9-15. Following the same pattern, 2 zones are projected on the west portion of sections Eln and Elc, centered underneath the 50 ppb anomalies found on the ferricrete of Eleonore west zone, Figure 9-14.

→ 30 ppb → Ferricrete	Collapsed saprolite	► 50 ppb	¥	30 ppb +	+	-• 30 ppb	Au Au Au Collapsed saprolite
			<u>alan di ka</u> ng kang kang kang kang kang kang kang ka	Saprock			
0	200 m		Qz (Au) ?	Mb	as / Ulbs / Porr	ohy	Qz (Au)

Figure 9-13: Sketched mineralized zone detected by drilling in the eastern portion of the Eln section and projected zone on the west side underneath the 50 ppb anomaly of Figure 9-12. The soil anomalies are created by the collapse of the saprolite, the dismantlement of the quartz veins and the concentration of gold.

Figure 9-14: Sketched mineralized zone detected by drilling in the eastern portion of the Elc section and projected zone on the west side underneath the 50 ppb anomaly of Figure 9-12.

- Ferricrete		→ 50 ppb ↓ Au	Collapsed	Au Au Au + 100 ppb +	Au 50 ppb	30 ppb+
0	200 m Mbas / Ulb	Saprock s / Porphy Qz (Au	p	Qz (Au)	Qz (Au)	

Figure 9-15: Sketched mineralized zones detected by drilling on the eastern and western portion of the Els section underneath the 100 and 50 ppb anomalies of Figure 9-12.

Conclusion

The lateritic profile of the Eleonore zone was characterized and compare with the standard profile in West Africa. One has observed the absence of the mottle clay zone underneath the ferricrete on the west Eleonore zone and the absence of both the mottle clay zone and the ferricrete on the east Eleonore zone.

The soils are residual and considered in situ on the east Eleonore zone with local presence of clay of possible lacustrine origin. The dominant ferricrete on the west Eleonore zone is also considered in situ.

The Freyssinet (1993) model was applied to the Eleonore soil anomalies and mineralization where gold is related to the collapse of the upper part of the saprolite, the dispersion of quartz veins and the concentration of heavy minerals including gold more or less centered above the mineralized zones.

Three sections were modelled, Eln, Elc and Els with 5 zones detected by drilling and located as predicted, centered underneath the 50 and 100 ppb gold anomalies. Following the same pattern, two zones have been modelled centered underneath the anomalies located in the ferricrete of west Eleonore.

It is concluded that the establishment of the lateritic profile, the origin of the soils and the understanding of the gold dispersion pattern at surface is critical to for the choice of a model that best represents the gold mineralization. This information should lead the exploration works at Eleonore and on the other mineralized zones of Tijirit.

10. Drilling

Algold initiated a 10,000 metres RC drilling program in early May 2016, followed by another 10,000 metres from September to December, In February 2017, a 30,000 drilling program was initiated that ran until the end of August 2017. The last two programs were more focused on expending the resources at Tijirit's Eleonore Zone.

Past operators Shield Mining and Gryphon Minerals have completed more than 35,000 metres of RC drilling and 3,500 metres of core drilling on the project.

Core and RC drill holes

A total of 92 diamond drill holes (DDH) and 629 reverse circulation (RC) holes have been completed and analyzed on the Tijirit project for respectively 10,706 and 80,337 metres of drilling. These DDH and RC holes were carried out on the project both by Algold Resources in 2016 and 2017 and past operators Shield Mining and Gryphon Minerals from 2009 to 2012. See Table 28-1 and Table 29-1 respectively in Annex I and Annex II. A total of 10 RC hole from Gryphon (12TRC120 to 12TRC125, 12TRC152, 12TRC153, 12TRC157, 12TRC158) and 5 trenches from Gryphon (12TT093 to 12TT097) are located outside of the mining concession 2480C2 and the exploration permit 1117B2.

Algold drilled a total of 32 complete diamond drillholes and 37 diamond extensions. Note that one drill hole is not accounted in the resource estimation because it does not contain assays that allow for it use, but they are listed in the Table 28-1 in Annex I. A total of 4 RC holes from Algold (T16RC082 to T16RC085) are located outside of the mining concession 2480C2 and the exploration permit 1117B2.

Drill holes are distributed throughout the main anomalous zones. These have been defined by soil geochemistry, surface rock chip samples and trenches and are mainly concentrated on Sophie I & II, Sophie III, Lily and Eleonore prospective zones, as shown in Figure 9-6. More RC holes have been carried out as exploration on various lithological and deformational contacts NNE and east of Eleonore in metasediments and meta-igneous rocks and SSW of Lily in various sheared contacts.

As example, the following shows HQ core mineralized intersections. (Figure 10-1)

- T17DD0001 in quartz veins in altered epidote-albite-chlorite shear zone in intermediate volcanics or metasediment from Eleonore south.
- LCD6 in silicified porphyry from Lily;
- SCD9 in a quartz-carbonate veined iron-rich metasediments from Sophie I & II;

In Eleonore South, T17DD0001 sample A035959 shows 2.97 g/t Au from quartz veins in altered epidotealbite-chlorite shear zone in intermediate volcanics or metasediment. In Lily, LCD6 contains a fair amount of sulphides, predominantly pyrite, but gold is primarily related to the silica replacement. In Sophie. SCD9 iron-formation also shows some sulphides but fine-grained gold is believed to be related to the deformational and fluid event that allowed quartz and carbonate veining. Iron-formation in Figure 10-1 shows heavy folding. The core angle is not representative of the entire hole.

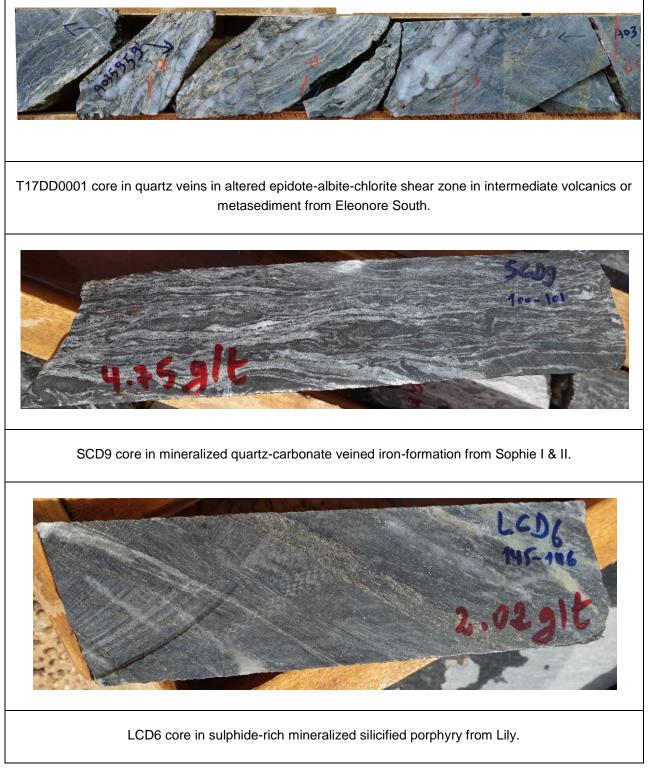


Figure 10-1: HQ Core Mineralized Intervals

SGS Canada Inc.

Various RC holes confirmed mineralized intersections in the main anomalous soil areas, but also in Eleonore East and Salma Zone, see Figure 10-2 and Figure 10-3. Outside the main prospects, mineralization is also related to NNE-trending sheared deformation zones or to variously oriented sheared contact between meta-igneous and metasedimentary rocks. Table 30-1 (see in Annex III) is a compilation of the RC and DDH intersections above 0.27 g/t Au. It shows grade values between 0.3 and 76.5 g/t Au and a median value of 0.6 g/t Au. Intersection lengths vary between 0.25 and 38 m with a median value of 2 m. Most of the intersections do coincide with major soil anomalies in Sophie I, II & III, Lily and Eleonore, see Figure 9-1, Figure 9-2, Figure 10-3 and Figure 9-6.

Survey of the drilling

Drysdale and Associates surveyed from February 19 and 23, 2017. Ground control points were established in the main prospects and WGS 84 UTM coordinates generated by post processing. The 2016 Algold drill holes were surveyed by RTK GPS and several historic drill holes surveyed to confirm accuracy.

The 2017 Algold Drilling Survey was conducted by Consulting Training Group (CTG). The device was calibrated by ground control points positioned by the Gryphon company and by the validation of the coordinates of some polls done by RTK GPS in February 2017. The concrete DH collar monuments were surveyed at the casing (X, Y) and elevation (Z) calculated from the actual ground level.

All 2016 drilling except 4 holes; T16RC023, TC16RC41, T16RC078, T16RC079, where the collar was destroyed, were surveyed to better than 5 cm accuracy in the XYZ.

There was excellent comparison in the X and Y between the Algold survey and the previous survey that generated the historic drill hole collar coordinates. However, the elevation (*z*) could not be reconciled based on the post processing data generated in the February 2017 survey and the historic survey. With no comparable geoid found to calculate the historic DH collar elevations, it was decided that the new survey be shifted to use the existing elevation "mine height". A +8.75 m shift was applied to the EGM2008 Geoidal height to bring it in line with the previous survey. It is assumed that there was an error when entering the location for the original survey ground control point hence the shift in elevation.

Verification between the coordinates of the holes in the database and the surveyed holes was done by the author of the current report. The fieldwork included the verification of collar locations by GPS readings with the WAAS correction. All drillholes can be found in the field and most are well identified with a proper monument. Table 12-1 shows the list of 18 collars with position comparisons that match very well each time.

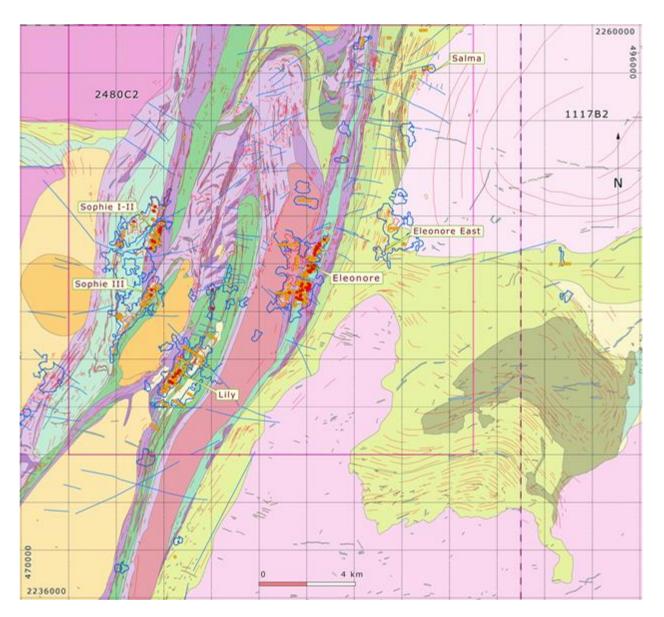


Figure 10-2: Tijirit Distribution of RC (orange) and Core Drill (red) Holes

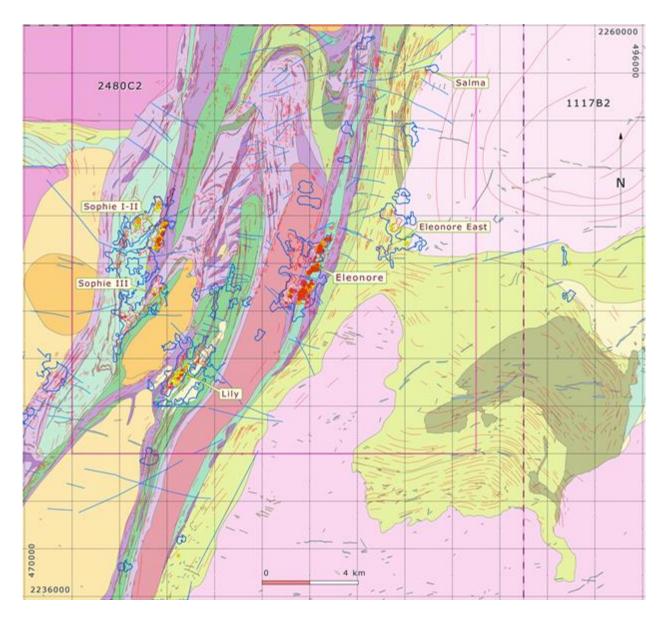


Figure 10-3: Tijirit Mineralized Drillholes > 0.9 g/t Au (yellow: 2009-2012 brown: 2016 red: 2017)

11. Sample Preparation, Analyses and Security

A standard operating procedure (SOP) document has been established by Algold, based on CIM best practice guidelines, and provides guidance and details on quality awareness, quality control (QAQC) implementation and monitoring during Reverse Circulation (RC) drilling. The procedures and techniques outlined within this protocol are considered to be compliant with NI 43-101 regulations. This has been confirmed by the author of the current report and by Mr. André Ciesielski, D.Sc., Geo., from Algold.

Data provided by previous owners, Shield Mining and Gryphon, are described briefly in the current report and in details in the previous 2016 technical report. The data available suggests that QAQC for the Shield Mining work (2009-2010, RC holes and trenches) included field duplicates, umpire laboratory duplicates and laboratory checks (same laboratory). Shield Mining apparently did not have standards and blanks inserted in sample batches.

In contrast, there is the full range of QAQC data for Gryphon work including standards, blanks, field duplicates and pulp duplicates. There is no indication in the QAQC data if an umpire laboratory was used.

11.1 Procedures Used by Algold

The following is the description of the procedures as described in the standard operating procedure (SOP) document that has been established by Algold and provides guidance and details on quality awareness, quality control (QAQC) implementation and monitoring during Reverse Circulation (RC) drilling.

In 2016, Algold used ALS Minerals Laboratory (ALS) in Nouakchott, Mauritania and ALS OMAC, Ireland as the primary laboratory for preparation and assaying samples generated on its project. ALS is an accredited laboratory in accordance with ISO 17025 with respect to its 50g fire assay analytical technique (Method Code Au-AA26) for gold samples. Since the beginning of 2017, the primary assay laboratory has been SGS Bamako.

In October 2016, Algold detected some anomalies identified from review of the QA/QC program. Concerns were raised to ALS and in order to guarantee the integrity of the overall process, all batches were verified and corrected data provided to ensure that all 2016 data is valid.

Since the beginning of 2017, analytical work for drill core and reverse circulation chips, geochemical samples and rock chip samples has been carried out at the independent SGS Laboratories Ltd. in Bamako, Mali. The 50 g fire assay with ASS finish analytical services are accredited by SANAS and are carried out with a quality assurance protocol in line with ISO 17025:2005. Prior to 2017, drill samples were prepared in the independent ALS Laboratory in Nouakchott, Mauritania and analysed at ALS Laboratories Ltd. in Loughrea, Co. Galway, Ireland, an ISO 17025 (2005) Certified Laboratory.

- All drilling was conducted by reverse circulation drilling with sampling conducted by riffle splitting to an average of 3 kg for dispatch to the assay laboratory;
- All sampling is conducted on a 1 m basis in mineralized areas (zones of interests, domains);

- Composite sampling is conducted on a 2 m basis in presumed barren geological domains
- Recovered sample weight is recorded at time of sample recovery on a 1 m basis. Data is used to verify recoveries and sample quality. Drilling is terminated if wet samples or poor recovery encountered;
- All drill chips logged on site for geology, alteration and mineralization for incorporation into geological models. A representative sample of the chips on a 1 m basis is retained on site;
- Sample preparation is conducted in a SGS on-site mobile sample preparation laboratory.
- Assaying is conducted at SGS Laboratory Ltd. In Bamako, Mali, since 2017 and previously prepared in the independent ALS Laboratory in Nouakchott, Mauritania and analysed at ALS Laboratories Ltd. in Loughrea, Co. Galway, Ireland;
- In both 2016 and 2017, samples are stored at the Algold field camp and put into sealed bags until delivered by a geologist on behalf of Algold to the respective laboratory where samples are prepared and analyzed. Since September 2017, samples are prepared at a samples preparation laboratory, located within the limit of the Tijirit camp and operated by SGS;
- Algold's samples are logged in the tracking system, weighed, dried and finely crushed to better than 70 %, passing a 2 mm (Tyler 9 mesh, US Std. No.10) screen. A split of 1,000 g is taken and pulverized to better than 85 %, passing a 75-micron (Tyler 200 mesh) screen, and a 50-gram split is analyzed by fire assay with an AA finish. Selected samples may be re-analyzed using a 1 kg cyanide leach (Bottle Roll) using "LeachWELL" or a 1 kg screen fire assay method. These results automatically supersede the original 50 g fire assay result.
- As part of Algold's quality assurance and quality control (QAQC) procedures; blanks, duplicates and certified reference material (standards) are routinely inserted within the sample stream to monitor laboratory performance during the preparation and analysis:
- A CRM sample (50-100g vacuum sealed sachet) is inserted into the sample stream after every 20 samples;
- Coarse blank samples are inserted into the sample stream at the beginning of every 20 samples and at selected positions within and immediately following known mineralization, to monitor potential contamination during sample preparation. Algold has used locally sourced granite, and barren quartz material provided by the sample preparation laboratories;
- Field duplicates are generated from a selected 1 m sample at a frequency of 1 in 20 samples. Ideally duplicates are selected from possible mineralized samples;
- Pulp duplicates are carried out routinely by the assay laboratory;
- Between 4-5 % of original assay pulps from the primary laboratory is submitted to a second accredited laboratory (SGS Lakefield, Canada) for umpire analysis to monitor bias and reproducibility of results. Whilst samples are randomly selected, it is ensured that the full spectrum of grades and geology be re-analyzed. CRMs are also added in sequence at a frequency of 1 in 20 along with the pulp duplicates;
- In summary, QC samples make up of a total of 20-25 % of the samples submitted and analyzed;
- If some samples come back barren where mineralization was anticipated, the "B" sample of the 1 m split is re-analysed using the screen fire assay method. A new sample ID is given (from a difference sequence than the regular samples).

For drill core, the same QAQC procedures are used as per the above description. Sampling is carried out honouring differences in alteration and lithological contacts with core split in half using a saw. Field duplicates are taken as quarter core splits of the same interval. Procedures for DDH are likely the same as for RC drilling.

11.1.1 Core Sample Quality and Sample Representativity

The author noted that the recovery was good to very good (95-100 %) in fresh rock, and generally better than 70 % in saprolite. For RC drilling, recovery is generally excellent, the top 4 metres of the hole experience some sample loss.

11.1.2 Standards Statistics

A total of 10 certified standards were used by Algold. SGS reviewed 1736 standards in the QAQC database at the effective date of the report since the previous technical report dated June 2017. The 1736 assays belong to 10 certified standards. The basic statistics of the standards are in Table 11-1. There were no evidences of wrongly identified standards (see Figure 11-1). The ratio of warnings is of 1.5 % and the ratio of failures is of 0.23 %. The detailed performance graphs are presented in Figure 11-2 to Figure 11-6.

The right graph of Figure 11-2 shows the results of the Oreas-65a standards, which recorded 3 warnings and 4 failures. Despite the 15 % rule of SGS Bamako, Algold should take action against the failures. A standard that has less gold than expected may be more acceptable because of partial digestion, but a higher grade than the expected value is problematic. Concerning the 4 failures, the batches that included 3 of these failures were not used in the resource estimate, and for one of the four failures, Algold contacted the laboratory who repeated the assays of 10 % of the samples and Algold followed up.

The right graph of Figure 11-4 shows results for the Oreas-15d standards that lists 6 warnings. The results are 3 % lower than the expected value. The digestion method is Aqua Regia and cyanide extraction, and it is a partial digestion so lower values are expected. SGS Bamako's rule is to re-analyse a sample batch if the gold is 15 % below the expected value.

The left graph of Figure 11-4 shows results for the Oreas-224 standards that lists 5 warnings. These warnings are still within acceptable limits according to the author and the laboratory.

The right graph in Figure 11-6 shows the results of the Oreas-228 standards that have recorded 9 warnings. Algold contacted the laboratory who reported that there was a problem with the micropipette used for dilution. As the problem seemed to concern only standards with high grades and that other standards behaved in an acceptable way, no changes were made. We can also notice that the warnings took place at the beginning of the period of use of this standard, and that then the values stabilized.

The results of the Oreas-200, AMIS0482, and Oreas-206 standards in Table 11-1 show that there was one warning for each of these standards. These warnings are still within acceptable limits according to the author and the laboratory.

These results are acceptable and confirm that the database is reliable.

Standards Id	Count	Expected Value	Standard Deviation	Warning Count	Fails Count	
Oreas-200	313	0.34	0.012	1	0	
Oreas-65a	209	0.52	0.017	3	4	
AMIS0221	73	1.14	0.040	0	0	
AMIS0482	241	1.46	0.085	1	0	
Oreas-15d	138	1.56	0.042	6	0	
Oreas-224	27	2.15	0.053	5	0	
Oreas-206	321	2.20	0.081	1	0	
Oreas-67a	163	2.24	0.096	0	0	
Oreas-228	78	8.73	0.293	9	0	
Oreas-208	173	9.25	0.438	0	0	
Total	1736			26	4	

Table 11-1: Basic Statistics on the Standards

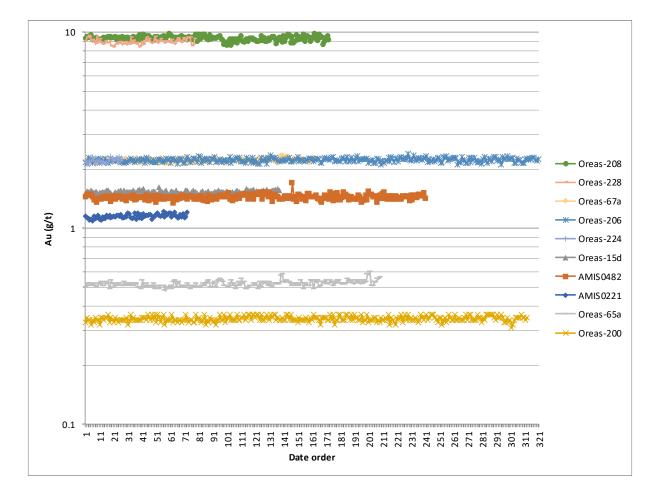
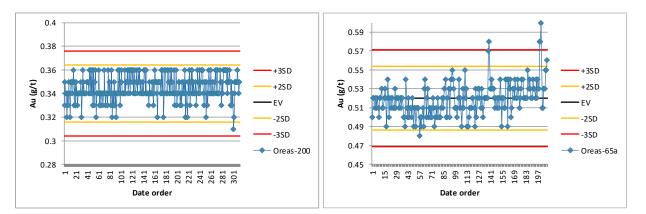



Figure 11-1: Individual Assays for the 10 Standards Studied by SGS

Figure 11-2: Performance for the QAQC Standards Oreas-200 (Left) and Oreas-65a (Right)

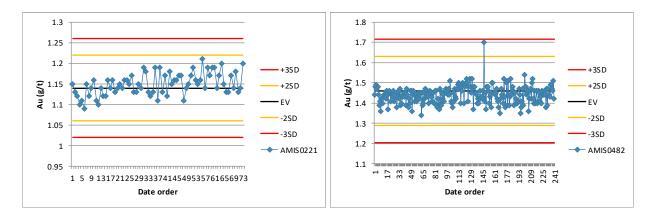
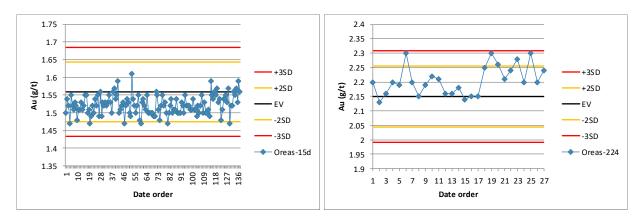
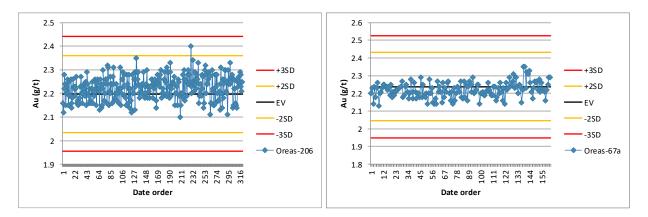




Figure 11-3: Performance for the QAQC Standards AMIS0221 (Left) and AMIS0482 (Right)

Figure 11-4: Performance for the QAQC Standards Oreas-15d (Left) and Oreas-224 (Right)

Figure 11-5: Performance for the QAQC Standards Oreas-206 (Left) and Oreas-67a (Right)

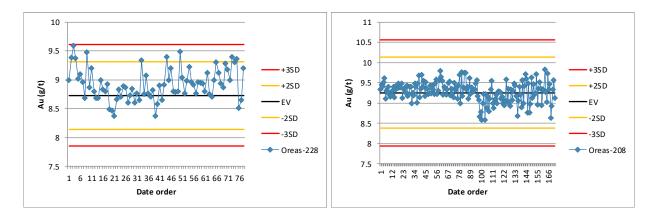


Figure 11-6: Performance for the QAQC Standards Oreas-228 (Left) and Oreas-208 (Right)

11.1.3 Blanks Statistics

A total of 1015 blanks were in the QAQC tables of Algold at the effective date of the report since the previous technical report dated June 2017. The blanks were dated from April 2, 2017 to December 28, 2017. If we set the warning threshold at 5 times the detection limit (0.01 g/t) and the failure threshold at 10 times the detection limit, we get no warning and one failure. This failure was included in the following graph presented in Figure 11-7. For the control samples that exceed the failure threshold at ten (10) times the detection limit, Algold did a follow up with the laboratory, but it was not possible to do a re-assay. Algold traced the error back to site with how the blank was prepared (crushed on site by Algold using contaminated crushing pot) being the problem. There were no significantly mineralised samples 77 samples after and 68 samples prior, so no re-assay the pulp. The umpire lab samples from this batch confirmed the original assays. The database that SGS used to estimate the resources of the Tijirit project includes the results of the certificate of analysis associated with this control sample. These results are acceptable and confirm that the database is reliable.

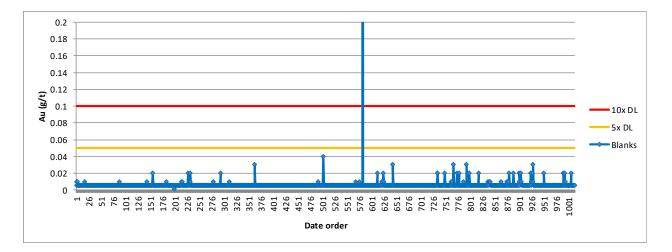


Figure 11-7: Performance for the QAQC Blanks

11.1.4 Field Duplicates (Mixed RC and DDH, Prepared by Algold on Site)

A total of 1025 field duplicates were prepared by Algold at the effective date of the report since the previous technical report dated June 2017. Most of the pairs (original and duplicate analysis) reveal a barren material. To avoid the problems caused by material close to the detection limit, SGS retained the 215 pairs with an average grade above 0.05 g/t. The pairs resulting graphs (scatterplot and QQ plot) are shown in Figure 11-8. SGS did the verification of bias by statistical sign test, student t-test and logarithmic student t-test and no bias can be identified. The average grade of the 215 pairs is of 1.36 g/t, the average variance for the pairs is of 9.65 therefore the coefficient of variation is of 228 %. There are 2 high grades in the original assays that could not be reproduced by the duplicates. These 2 results are not statistically significant. Therefore, these results are acceptable and confirm that the database is reliable.

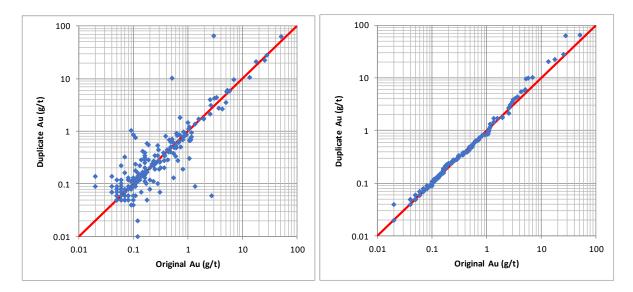


Figure 11-8: Scatterplot of the Algold Field Duplicates (Left) – QQ plot (Right)

11.1.5 Pulp Duplicates (Randomly Selected by Algold)

Since the previous technical report, no pulp duplicates were prepared by Algold. SGS did the verification of bias for the previous report, and the results of the pulp duplicates were acceptable and confirmed that the database was reliable. Please refer to the previous technical report dated June 2017 for detailed information on pulp duplicates.

11.1.6 Umpire Duplicates on the Algold RC Drillholes

A total of 937 umpire duplicates sent to SGS Lakefield were prepared on the Algold RC drillholes at the effective date of the report since the previous technical report dated June 2017. Algold randomly selected pulps and sent them to SGS. Most of the pairs (original and duplicate analysis) reveal a barren material. To avoid the problems caused by material close to the detection limit, SGS retained the 415 pairs with an average grade above 0.05 g/t. The pairs resulting graphs (scatterplot and QQ plot) are shown in Figure 11-9.

SGS did the verification of bias by statistical sign test, student t-test and logarithmic student t-test and no bias can be identified. The average grade of the 415 pairs is of 1.46 g/t, the average variance for the pairs is of 5.34 therefore the coefficient of variation is of 158 %. By removing the pair with the largest variance, the statistical test results remain conservative. Thus, the average grade of the 414 pairs is of 1.39 g/t, the average variance for the pairs is of 0.47 therefore the coefficient of variation is of 49 %. The QQ plot reveals that the low values are slightly lower for the umpire lab and that the highest values are slightly higher for the umpire lab. These results are acceptable and confirm that the database is reliable.

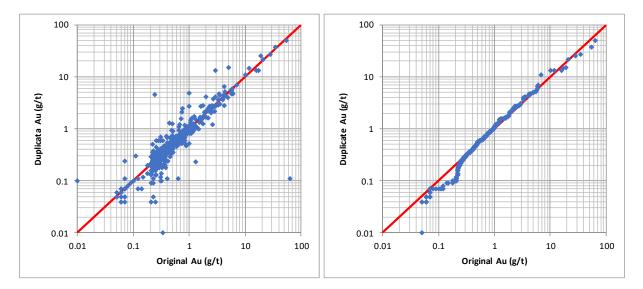


Figure 11-9: Scatterplot of Umpire Duplicates on the Algold RC Drillholes (Left) – QQ plot (Right)

11.1.7 Laboratory Duplicates on Algold RC Drillholes (Chosen by the Lab)

A total of 1807 duplicates were prepared on Algold 2017 RC drillholes up to the effective date of the report since the previous technical report dated June 2017. Most of the pairs (original and duplicate analysis) reveal a barren material. To avoid the problems caused by material close to the detection limit, SGS retained the 1132 pairs with an average grade above 0.05 g/t. CK1 and/or CK2 assays were performed by the laboratory and were used together. No variability of the data was found.

The pairs resulting graphs (scatterplot and QQ plot) are shown in Figure 11-10. SGS did the verification of bias by statistical sign test, student t-test and logarithmic student t-test and no bias can be identified. The average grade of the 1132 pairs is of 1.27 g/t, the average variance for the pairs is of 0.55 therefore the coefficient of variation is of 58 %. These results are acceptable and confirm that the database is reliable.

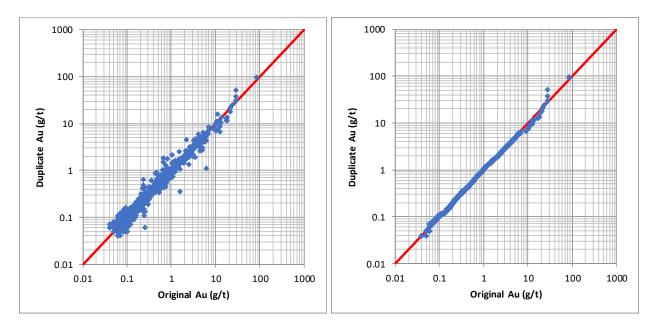


Figure 11-10: Scatterplot of the Algold RC Drillholes Duplicates (Left) – QQ plot (Right)

11.1.8 Laboratory Duplicates on Algold DDH (Chosen by the Lab)

A total of 758 duplicates were prepared on Algold 2016-2017 DDH up to the effective date of the report since the previous technical report dated June 2017. Most of the pairs (original and duplicate analysis) reveal a barren material. To avoid the problems caused by material close to the detection limit, SGS retained the 466 pairs with an average grade above 0.05 g/t. CK1 and/or CK2 assays were performed by the laboratory and were used together. No variability of the data was found.

The pairs resulting graphs (scatterplot and QQ plot) are shown in Figure 11-11. SGS did the verification of bias by statistical sign test, student t-test and logarithmic student t-test and no bias can be identified. The average grade of the 466 pairs is of 1.98 g/t, the average variance for the pairs is of 0.24 therefore the coefficient of variation is of 25 %. These results are very good and confirm that the database is reliable.

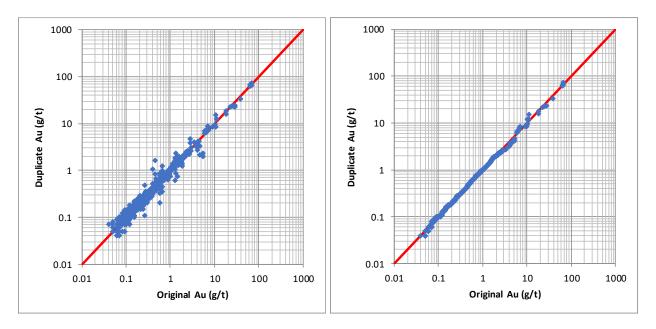


Figure 11-11: Scatterplot of the Shield RC Drillholes Duplicates (Left) – QQ plot (Right)

11.1.9 Cyanide Bottle Roll Tests

A total of 478 cyanide bottle roll tests were prepared on Algold 2016-2017 RC drillholes and DDH up to the effective date of the report. The pairs resulting graphs (scatterplot and QQ plot) are shown in Figure 11-12. SGS did the verification of bias by statistical sign test, student t-test and logarithmic student t-test. A bias was detected by the student t-test and logarithmic student t-test. SGS Geostat observed a bias on high values and noted that high values are higher for cyanide bottle roll tests.

The average grade of the 477 pairs is of 1.80 g/t, the average variance for the pairs is of 1.43 therefore the coefficient of variation is of 66 %. These results are good and confirm that the database is reliable.

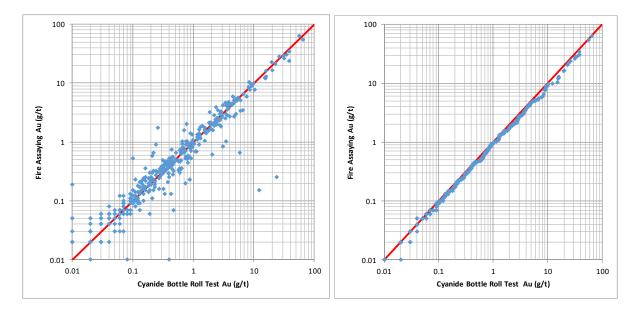


Figure 11-12: Scatterplot of the Cyanide Bottle Roll Tests on RC Drillholes and DDH (Left) – QQ plot (Right)

11.2 Procedures Used by Gryphon

The following is the description of the procedures as described by Mr. Ahmed Mohamed Lemin, Database Manager of Gryphon:

- All drilling was conducted by reverse circulation drilling with sampling conducted by riffle splitting to 3 kg for dispatch to the assay laboratory;
- All sampling conducted on a 1 m basis;
- Moisture content and recovered sample weight were recorded at time of sample recovery on a 1 m basis. Data used to verify recoveries and sample quality. Drilling terminated if wet samples or poor recovery encountered;
- No sample recovery or quality issues were encountered during the drill program likely to impact on the quality of data derived;
- All drill chips logged on site for geology, alteration and mineralization for incorporation into geological models. A representative sample of the chips on a 1 m basis retained on site;
- All RC chips are photographed for digital storage;
- Assaying and sample preparation conducted at SGS Laboratory in Kayes, Mali;
- 3 kg samples as received from Gryphon Minerals are dried and crushed to 6 mm before being quartered using a Rocklabs splitter;
- 1 quarter is then pulverised by ring mill to 70-75 microns and 200g recovered as the master pulp for 50g fire assay;
- All assaying conducted by fire assay with an AAS finish on a 50 g charge;
- Blind standards, blanks and field duplicates inserted at a rate of 5 % in the field and results analysed in the Gryphon Minerals database system. Acceptable accuracy and precision have been established for all samples reported.

11.3 Procedures Used by Shield Mining

No information has been found on Shield Mining's exact procedures. The data was validated by the author and some QAQC (field duplicates, umpire laboratory duplicates and laboratory checks) is available and shown in the next sub-sections.

11.4 Procedures Used by Gryphon for the Diamond Drillholes

While no details are available, the core is well identified, with some minor depth errors noted in the core box blocks. The same QAQC procedures and laboratory procedures as the Gryphon RC holes were used.

11.4.1 Core Sample Quality and Sample Representativity

The author noted that the recovery was good to very good in mineralized zones observed in holes ECD2, LCD6, SCD1, SCD7 and SCD9.

11.4.2 Standards Statistics

A total of 17 standards (certified (13) and uncertified (4) materials) were used by Gryphon. SGS reviewed 690 of the 872 standards available in the QAQC database. The 690 assays belong to 9 standards (6 certified and 3 uncertified). There were evidences of wrongly identified standards. SGS did many changes to get the results. While the number of warnings and failures were very much reduced, the author believed the revised results are closer to reality. The final ratio of warnings is of 4 % and the ratio of failures is of 1.7 %. These results are acceptable and confirm that the database is reliable.

According to the 2016 technical report, it was recommended that Algold staff going forward take preventative measures to eradicate the problem of mislabelling of standards.

11.4.3 Blanks Statistics

A total of 948 blanks were sent to the laboratory by Gryphon. If we set the warning threshold at 5 times the detection limit (0.01 g/t) and the failure threshold at 10 times the detection limit, we get 1 warning and 1 failure. These results are acceptable and confirm that the database is reliable.

11.4.4 Field Duplicates (Gryphon)

A total of 655 field duplicates were prepared by Gryphon. Most of the pairs (original and duplicate analysis) reveal a barren material. To avoid the problems caused by material close to the detection limit, SGS retained the 62 pairs with an average grade above 0.05 g/t. SGS did the verification of bias by statistical sign test, student t-test and logarithmic student t-test and no bias can be identified. The average grade of the 62 samples is of 0.51 g/t, the average variance for the pairs is of 0.66 therefore the coefficient of variation is of 159 %. These results are acceptable and confirm that the database is reliable.

11.4.5 Pulp Duplicates (Gryphon)

A total of 422 pulp duplicates were prepared by Gryphon. Most of the pairs (original and duplicate analysis) reveal a barren material. To avoid the problems caused by material close to the detection limit, SGS retained the 57 pairs with an average grade above 0.05 g/t. The QQ plot reveals a strong bias. SGS did the verification of bias by statistical sign test, student t-test and logarithmic student t-test and a strong bias can be identified by all methods. The average grade of the 57 samples is of 0.26 g/t, the average variance for the pairs is of 0.18 therefore the coefficient of variation is of 168 % (too high for pulp duplicates). The average for the original assays is of 0.36 g/t and the average for the duplicate assays is

of 0.16 g/t, a relative difference of -56 %. The observed bias is unacceptable but should have a sensible explanation. At the time of the writing of the previous 2016 technical report, SGS can only observe but cannot provide an explanation.

11.4.6 Field Duplicates in Trenches

A total of 450 field duplicates were prepared for trenches. Most of the pairs (original and duplicate analysis) reveal a barren material. To avoid the problems caused by material close to the detection limit, SGS retained the 55 pairs with an average grade above 0.05 g/t. SGS did the verification of bias by statistical sign test, student t-test and logarithmic student t-test and no bias can be identified. The average grade of the 55 samples is of 0.21 g/t, the average variance for the pairs is of 0.25 therefore the coefficient of variation is of 239 %. These results are acceptable and confirm that the database is reliable.

11.4.7 Umpire Duplicates on the Shield Trenches

A total of 160 umpire duplicates (probably sent to an umpire laboratory) were prepared on the Shield trenches. Most of the pairs (original and duplicate analysis) reveal a barren material. To avoid the problems caused by material close to the detection limit, SGS retained the 23 pairs with an average grade above 0.05 g/t. The QQ plot reveals a strong bias. SGS did the verification of bias by statistical sign test, student t-test and logarithmic student t-test and a strong bias can be identified by all methods. Both t-tests just reach the conclusive threshold of "95 % chance of a bias". This is quite understandable with only 23 pairs to work with. The average grade of the 23 samples is of 0.13 g/t, the average variance for the pairs is of 0.01 therefore the coefficient of variation is of 91 % (reasonable for gold duplicates). The average for the original assays is of 0.16 g/t and the average for the duplicate assays is of 0.09 g/t, a relative difference of -41 %. The observed bias is unacceptable but should have a sensible explanation. At the time of the writing of the previous 2016 technical report, SGS can only observe but cannot provide an explanation.

11.4.8 Duplicates on Shield RC Drillholes

A total of 435 duplicates were prepared on Shield RC drillholes. Most of the pairs (original and duplicate analysis) reveal a barren material. To avoid the problems caused by material close to the detection limit, SGS retained the 120 pairs with an average grade above 0.05 g/t. SGS did the verification of bias by statistical sign test, student t-test and logarithmic student t-test and no bias can be identified. The average grade of the 120 samples is of 0.71 g/t, the average variance for the pairs is of 0.07 therefore the coefficient of variation is of 38 %. Such a low coefficient of variation should be due to these duplicates being some pulp duplicates. These results are very good and confirm that the database is reliable.

11.5 Conclusion

The QAQC was reviewed by the author and the results are satisfactory. The author, given the successful verification of the data and given that most items of the QAQC are satisfactory, believes that the sample preparation, security and analytical procedures are adequate to support the estimation of resources presented in this technical report.

SGS Geostat noted that QAQC warnings and failures are well attended by Algold employees. There is good standard operating procedures that focus on the resolution of any QAQC problems found in the results from the laboratory. Algold follows well the current standard operating procedures. Most QAQC warnings and failures found by SGS were "false warnings" because Algold had remedied the situation with the laboratory.

SGS Geostat recommends that Algold removes QAQC warning and failure data after solving a problem in the data. In this way, the QAQC warning and failure data present in the database will better represent the quality of the data in the database.

12. Data Verification

The author did the following to ascertain that the database supporting the estimation of resources is sound and reliable:

- Verification of the highest assays of the Algold 2017 data against analytical certificates;
- Site visit;
- Independent sampling;
- Multiple others database verifications;
- Verification of bias for RC holes and trenches.

The author of this report has prepared public resource technical reports for Algold in August 2016 and June 2017. For both reports, the author did some verification, concluding to adequate data for resource estimation.

12.1 Verification of the Algold 2017 Data

The author did a verification of available analytical certificates to ascertain drill database conformity. A total of 200 of the highest assays belong to Algold 2017 new data, which represents 2.7 % of the new assays, have been verified against analytical certificates.

The author found exact match between the verified certificates and 200 assays from the database coming from Algold drillholes, previous owners data has been verified for the preparation of the previous technical report.

12.2 Site Visit

The author visited the Tijirit project from the August 14 to 18 of 2017 (5 days).

At the Tijirit camp, the author was with Mr. Alastair Gallaugher, C.Geo., BSc. Geology, Algold's on-site geologist responsible for the 2017 drilling campaign. SGS Geostat also met with several Algold geologists, including Mr. Mohameden Oued Khadim Awen, Mr. Kane and Mr. Malum, Mr. Mohamed Ghoulam, geographic assistant, Mr. Ahmed Brahim M'Body, warehouse manager and responsible for density measurements, and Mr. Mohamed Keine, responsible of Algold logistics.

Many subjects were discussed including but not limited to:

- Structural geology;
- Known mineralized structures and available data;
- Preparation of the 2017 drilling campaign, Phase IV;
- Procedures put in place for drilling, logging, sampling, QAQC, etc.;
- Potential new targets;

- Comments on the most recent mineralized envelopes by SGS;
- Availability of material for independent sampling by SGS.

During the author's visit at the Tijirit project site, the following actions were taken:

- Visit of the diamond drill in operation and the core shack where the core is transported and treated by Algold geologists and drill observation in action, core recovery, core orientation identification, handling and storage in wooden boxes, identification of footage on wooden blocks;
- Visit of the reverse circulation drill in operation and observation of the procedure followed for the preparation of 1 m samples and sometimes 2 m samples when the geologist does not identify any trace of gold mineralization;
- Visit of the storage site for the reverse circulation drill samples at Tijirit camp;
- Visit of a trench;
- Visit of the Algold core shack in Nouakchott with Mr. Mohamed Keine;
- Revision of the protocol used for on-site density measurement with measurement of weight in the air and weight in water with Mr. Ahmed Brahim M'Body;
- Revision of the core sampling protocol;
- Review of Quality Assurance and Quality Control Protocols (QAQC) with Mr. Alastair Gallagher;
- Visit of illegal miners;
- Independent sampling of 45 witness RC samples from 4 holes (see details in the Verification Re-Assays - Independent Sampling by SGS section);
- Visit and field observation of the following outcrops:
 - Eleonore (West, South, Center, and North parts)
 - o Lily
 - Sophie I and II
- The Sophie III zone has been seen without dwelling because it is less important in terms of resources;
- The fieldwork included some structural measurements and verification of collar locations by GPS readings with the WAAS correction. Revision of the procedure used by Algold for determining coordinates using hand-held GPS (Garmin Legend Etrex HCx model). All drillholes can be found in the field and most are well identified with a proper monument. Table 12-1 shows the list of 18 collars with position comparisons that match very well each time.

Figure 12-1: Typical Drillhole Monument (Left) – Mr. Gallaugher, Mr. Ciesielski and Mr. Yann Camus somewhere between Sophie I and Sophie II (Right)

Verification		Orantan	Mineralization	SGS Geo	ostat- GPS	Data	abase	Distance
Date	Hole Name	Operator	Bodies Encountered	Easting	Northing	Easting	Northing	(m)
	T17RC128	Algold	Lily C, Y	476,565	2,245,530	476,563	2,245,530	1.7
	T17RC174	Algold	Lily D, G, M, R	476,154	2,244,769	476,152	2,244,768	2.2
15-Aug-17	T16RC112	Algold	Lily, no significant Au	476,776	2,245,522	476,775	2,245,521	1.8
	T16RC113 Algold		Lily, no significant Au	476,867	2,245,546	476,865	2,245,542	4.7
			Lily B	476,862	2,245,758	476,863	2,245,758	0.9
	T16RC143	Algold	Sophie 3M	475,472	2,249,684	475,472	2,249,683	1.3
	T16RC020	Algold	Sophie 2I	475,653	2,250,674	475,653	2,250,672	2.3
	T16DD006m	Algold	Sophie 2I	475,603	2,250,784	475,602	2,250,785	1.6
	SRD19	Algold	Sophie 2G, 2H	475,607	2,250,916	475,607	2,250,918	1.8
	SRD19 Algold T16RC122 Algold		Sophie 2B	475,810	2,251,458	475,809	2,251,460	1.7
	T16RC065	Algold	Sophie 2B, 2M, 2N	475,828	2,251,619	475,824	2,251,622	4.9
16-Aug-17	T17DD005	Algold	Eleonore North 2	482,751	2,251,022	482,751	2,251,024	1.5
10 / lug 17	T16DD010	Algold	Eleonore North 10	482,527	2,250,785	482,527	2,250,785	0.5
	T16RC099	Algold	Eleonore North 25	482,404	2,250,692	482,403	2,250,691	1.6
	T17DD006	Algold	Eleonore Centre, no significant Au	482,241	2,249,902	482,240	2,249,902	1.1
	T17RC025	Algold	Eleonore West 1, 2	481,211	2,248,804	481,206	2,248,802	5.3
	T17RC154	Algold	Eleonore South-South 1, 5, 20, 21, 23	481,557	2,248,688	481,554	2,248,683	5.7
	T16RC147	Algold	Eleonore South-South 16, 17	481,579	2,248,436	481,575	2,248,436	3.6

Table 12-1: List of Independently Measured Collar Locations and Validation

12.3 Witness Samples Found at the Tijirit Camp Site

The witness samples that are present at the Tijirit Camp Site are mainly of 4 types:

- Half cores of the diamond drill holes that are well preserved in core boxes;
- RC trays containing coarse material representative of each metre (See Figure 12-2);
- Witness samples split at the drill from the RC drilling (about 2 kg each);
- Pulps returned from the laboratory.

While the first 2 first types of witness samples are fairly well organised, the last 2 types of witness samples, at the time of the site visit, were not well organised; some labels had been erased or sometimes bags are pierced rendering the sample unusable. Some double bagging procedures and improved bag identification should be explored by Algold.

Figure 12-2: Core Boxes from Diamond Drillholes (Left) and Coarse Chip Trays from RC Drillholes (Right)

Figure 12-3: Witness Samples from the RC

The half cores are well identified and the author reviewed the core for drillholes SRD70 and T17RD165. Some visible gold was observed inside hole T17RD165 at about 98 m depth (corresponds to mineralized olume Sophie 3D). Figure 12-4 presents the visible gold as photographed by the author.

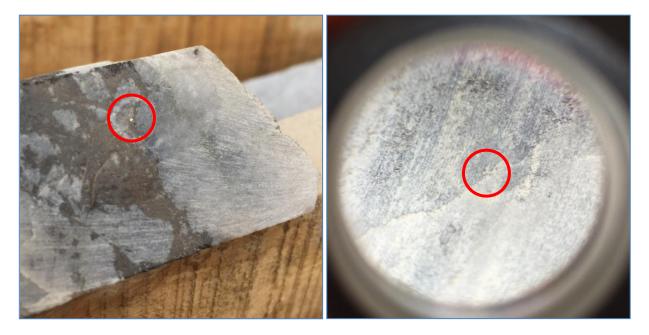


Figure 12-4: Visible Gold (Inside Red Circles) as Photographed by the Author – Hole T17RD165 (Sophie 3)

12.4 Verification Re-Assays – Independent Sampling by SGS

For the validation of the data used for this resource estimation, the author looked for identifiable witness samples whilst on site in Tijirit. A total of 45 witness samples were selected to be re-sampled, all of which are from Algold's 2016-2017 reverse-circulation (RC) drilling program. They are witness samples split at

the drill and are of about 2 kg each and are from 4 holes: T16RC021 (13 from Sophie II), T16RC052 (8 from Lily), T17RC045 (12 from Eleonore South) and T17RC050 (12 from Eleonore Center). The author supervised the collection of the witness samples and the re-bagging of the 45 samples (See Figure 12-5 for pictures of the bags before final packing for the transfer to SGS Bamako laboratory in Mali). A total of 5 QAQC samples were added. The author himself escorted the samples from the Tijirit camp to the truck leaving Nouakchott for the SGS laboratory in Bamako – Mali for preparation of the samples and then the samples have been analysed at SGS laboratory in Ouagadougou – Burkina.

The list of the re-sampled intervals can be found in Table 12-2. Since some of the samples in the database are 2 m in length, while the independent samples that were selected and analyzed are all 1 m in length, an average of the independent sample results corresponding to the same lengths has been done. From 45 intervals of 1 m collected for independent analysis, SGS Geostat compiled 30 intervals to compare with the original samples from the database.

In addition to independently verifying the gold grades in the database, SGS aimed to verify the potential benefit of using the bottled cyanidation method, which is known to be the best method for revealing gold for some coarse gold projects. Results on the 30 samples showed a bottled cyanidation content 17 % lower than the average of the fire assay contents. Given the poor results on 30 samples, fire assay could be encouraged because it is less expensive. However, QAQC results on 478 samples show that rich samples are generally enhanced by bottled cyanidation. On average, there is a gain in the use of cyanidation in bottles. The QAQC analysis is more reliable given the number of samples and therefore bottled cyanidation is a recommended method for the project.

In 2016, SGS Geostat wanted to justify the possible advantage of using the Metallic Screen method. Given the poor results on 45 samples, Fire Assaying was encouraged because it is less expensive.

The comparison of the Database Au grade versus the SGS Bamako independent laboratory Au grade showed that the database is reliable. The author tried to identify a bias using 3 statistical tests: the sign test, the student-t test and the logarithmic student-t test. None of them identified a bias. The results of the comparison are shown in Table 12-2 and Figure 12-6.

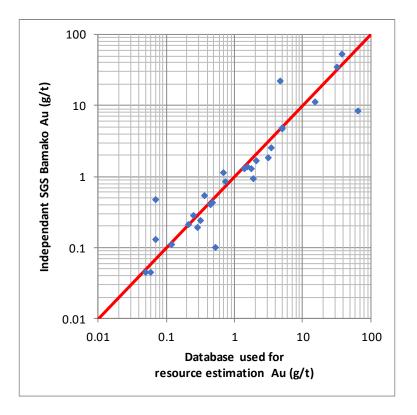


Figure 12-5: Pictures of the 45 Independently Re-Assayed Samples

Table 12-2: List of 45 Independently Re-Assayed Samples – Database Au (g/t) vs Independent SGSBamako Au (g/t)

Sample	Hole Name	From	То	Algold Database	SGS Bamako Ind. Sampling	Difference
Number		(m)	(m)	Au (g/t)	Au (g/t)	
C36626	T17RC045	52	54	0.005	0.005	0 %
C36628	T17RC045	54	56	65.2	8.365	-87 %
C36630	T17RC045	56	58	15.3	11.19	-27 %
C36633	T17RC045	58	60	1.9	0.93	-51 %
C36635	T17RC045	60	62	2.08	1.68	-19 %
C36637	T17RC045	62	64	0.21	0.21	0 %
C36639	T16RC052	94	96	0.29	0.19	-34 %
C36641	T16RC052	96	97	0.37	0.54	31 %
C36643	T16RC052	97	98	5.11	4.89	-4 %
C36644	T16RC052	98	100	1.55	1.36	-12 %
C36646	T16RC052	100	102	0.48	0.425	-11 %
C36648	T17RC050	22	24	0.05	0.045	-10 %
C36650	T17RC050	24	26	38.2	53.06	28 %
C36653	T17RC050	26	28	32.1	34.84	8 %
C36655	T17RC050	28	30	4.69	21.945	79 %
C36657	T17RC050	30	32	0.75	0.845	11 %
C36659	T17RC050	32	34	0.06	0.045	-25 %
C36661	T16RC021	66	67	0.12	0.11	-8 %
C36662	T16RC021	67	68	5.05	4.7	-7 %
C36664	T16RC021	68	69	0.69	1.14	39 %
C36665	T16RC021	69	70	0.25	0.28	11 %
C36666	T16RC021	70	71	0.07	0.13	46 %
C36667	T16RC021	71	72	0.32	0.24	-25 %
C36668	T16RC021	72	73	0.45	0.4	-11 %
C36669	T16RC021	74	75	3.46	2.52	-27 %
C36670	T16RC021	75	76	3.18	1.85	-42 %
C36671	T16RC021	76	77	1.78	1.3	-27 %
C36673	T16RC021	77	78	1.4	1.26	-10 %
C36674	T16RC021	78	79	0.53	0.1	-81 %
C36675	T16RC021	79	80	0.07	0.47	85 %
AVERAGE				6.19	5.17	-17 %

Figure 12-6: Scatterplot of the 30 Independently Re-Assayed Samples – Independent SGS Bamako Au (g/t) vs Database Au (g/t)

12.5 Database Verification

Standard verifications were carried out: extreme values, data going beyond hole depth, check of gaps in the information, search of collars inconsistencies. Only minor details needed any changes and all was fine for the resource modeling and estimation.

But since the database included different types of data, it was important to verify if a bias could be found. It is well recognised in the industry that diamond drillholes (DDH) are very reliable. Then reverse circulation (RC) drillholes have to be watched and also trenches.

In the previous technical report, the DDH by Gryphon were compared to some RC drillholes by Shield. The trenches by Shield and Gryphon were compared to DDH by Gryphon. Since all verifications are satisfying, it is also accepted that both work by Gryphon and Shield are sound and reliable for the estimation of resources. Please refer to the previous technical report dated June 2017 for detailed information of this verification.

12.6 Conclusion

The verification of the 2017 Algold database is satisfactory for the preparation of the resource estimation. The site visit allowed multiple verifications including the identification of visible gold in one drillhole. Everything in reality corresponded well to the information on paper. The independent sampling of 45 witness samples confirmed the database information. No bias was identified.

The standard database verifications run by SGS indicates a sound database, reliable for the estimation of resources. From the bias study between RC and DDH, and between trenches and DDH, SGS concludes that the DDH, RC and trenches can be used together for the estimation of resources.

In the previous technical report, the DDH by Gryphon were compared to some RC drillholes by Shield. The trenches by Shield and Gryphon were compared to DDH by Gryphon. Since all verifications are satisfying, it is also accepted that both work by Gryphon and Shield are sound and reliable for the estimation of resources.

13. Mineral Processing and Metallurgical Testing

To date, two series of metallurgical tests have been completed on the Tijirit project by Algold. The first series performed in the fall of 2016 included 4 composites. The second series started in September 2017 on 16 composites is still being implemented as of January 19, 2018. Partial results are presented.

13.1 Mineral Processing Testwork 2016

Preliminary metallurgical testing was carried out in Q4-2016 at SGS located in Lakefield, Canada, on four composites using HQ core samples collected from the Eleonore, Sophie I and Sophie II, and Lily zones. The Eleonore composite was characterized by quartz veins associated with metasediments. The Sophie I composite was made up of quartz veins within banded iron formations ("BIF"). The Sophie II composite was made up of weathered BIF and the Lily composite was made up of metasediments. Each composite weighted between 70 kg and 130 kg.

Utilizing fire assay analysis, the head grade for each of the composites were as follows in Table 13-1.

Zone	Composite No	Rock Type	Samples Weight (kg)	Head Grade (g/t Au)
Eleonore	1	Quartz Vein with Metasediments	130.10	22.8
Lily	2	Metasediments	131.5	0.67
Sophie II	3	Weathered BIF	70.55	1.53
Sophie I	4	Qtz Veins and BIF	90.20	5.36

Table 13-1: Head Grades

The testwork program focused on the amenability of the samples to a heap leaching, gravity separation and cyanidation. A comminution study and environmental (acid rock drainage) testwork were also completed. Full HQ core samples were received for the test program and they were prepared into 4 main composites (Comp 1 to Comp 4). Two additional composites (Comp 5 and Comp 6) were also created but were only submitted for gold head assay.

A summary of the head assays is presented in Table 13-2.

Element	Unit	Comp 1	Comp 2	Comp 3	Comp 4	Comp 5	Comp 6
		Eleonore	Lily	Sophie 2	Sophie 1	Eleonore	Eleonore
Au Cut A	g/t	18.3	0.59	1.55	5.16	2.78	<0.02
Au Cut B	g/t	27.2	0.74	1.51	5.56	0.42	<0.02
Au Avg.	g/t	22.8	0.67	1.53	5.36	1.60	<0.02
Au Calc.	g/t	19.4 *	1.22	1.98	5.29 **		
Ag	g/t	15.1	1.0	0.6	0.9		
S⊤	%	2.12	1.14	0.17	3.76		
S⁼	%	1.93	1.04	0.17	3.64		

Table 13-2: Head Assay Summary

Au Calc. = calculated average head grade from testwork

* Calculated (weighted average) from G-1, G-5 and CN-17R

** Calculated (weighted average) from G-4 and G-6R

The direct gold head grades (duplicate 50 g fire assay) ranged from 0.67 g/t to 22.8 g/t for Comp 1 to 4. The silver and sulphur head grades ranged from 0.6 g/t to 15.1 g/t and 0.17 % to 3.76 %, respectively. The gold head grades for Comp 5 and 6 were 1.60 g/t and <0.02 g/t, respectively. The calculated gold head grades from the metallurgical testwork ranged from 1.22 g/t to 19.4 g/t.

The comminution program consisted of the SMC test, the Bond ball mill grindability test, and the UCS test performed on four composite samples as well as the Bond abrasion test on two of the four samples. Table 13-3 summarizes all the individual grindability results.

Sample	Relative	JK Pa	aramet	ters	BWI	A	UCS ¹
Name	Density	Axb t _a SCSE		SCSE	(kWh/t)	(g)	(MPa)
Comp 1	2.85	45.8	0.41	9.6	14.6	0.534	94.0
Comp 2	2.75	30.4	0.28	11.4	15.4	-	55.5
Comp 3	2.65	65.5	0.64	8.0	12.0	0.391	29.1
Comp 4	3.10	35.4	0.29	11.5	12.7	-	102.9

Table 13-3: Grindability Summary

¹ UCS values represent average of 3 to 8 specimens for each sample

Comp 1, Comp 2 and Comp 4 were generally classified as medium to hard in terms of the SMC, BWI and UCS tests while Comp 3 was mostly classified as soft in terms of the aforementioned tests. The two samples submitted for the abrasion test (Comp 1, Comp 3) fell in the moderately to abrasive range of abrasiveness.

The metallurgical test program consisted of heap leaching (coarse ore bottle roll tests) on three of the four composites. Gravity separation and cyanidation testwork was completed on all samples. A single gravity tailings flotation test was completed using Comp 1.

The Comp 1 gravity gold recovery was ~58-65 % (two tests). The gravity gold recoveries for Comps 2-4 ranged from ~31 % to ~71 %. The gravity separation results indicated that a gravity separation circuit should be considered in the overall process flowsheet.

The Comp 1 gravity tailings sample responded well to rougher flotation. Gold and sulphur recoveries were 92.3 % and 97.0 %, respectively, at a mass pull of 5.7 %. The overall gravity and flotation circuit recovery was 97.3 %.

Heap Leach amenability (coarse ore bottle roll cyanidation) tests were completed using Comps 1, 2 and 3 at three crush sizes; -¾ inch, -½ inch and -¼ inch. The final 28-day gold extractions ranged from 12.3 % to 38.9 % for Comp 1. Gold extractions were much higher for Comp 2 and Comp 3 and ranged from 58.9 % to 82.5 % and 61.9 % to 70.1 %, respectively. It was clear in all cases that, while gold extraction kinetics had slowed somewhat over the final week of the tests, leaching was likely nowhere near complete. Given the gold head grades, this was not surprising. Finer crushing of the ore would likely yield higher gold extractions and faster leach kinetics but it is difficult to tell what the optimal crush size would be with the data at hand. No definitive conclusion can be drawn from these results, but it is unlikely that heap leaching is the metallurgically optimal treatment process for these ores.

In total, 12 gravity tailing cyanidation tests were completed to investigate the response of the samples to cyanidation using standard leach conditions. The relationship between grind size and leach extraction was explored for Comp 1 and Comp 4. The impact of pre-aeration and lead nitrate on cyanide consumption and leaching kinetics was also determined for Comp 1.

The gravity tailing samples responded well to cyanidation and overall (gravity + cyanidation) gold recoveries ranged from 87.3 % to 97.8 % and averaged ~95 %. The overall gold recoveries for Comps 1, 2, and 3 were all ~96 % or higher. The Comp 4 average overall gold recovery was 90.8 % and was directly related to grind size P80.

The Comp 1 (high grade sample) leach extraction was somewhat insensitive to grind size. Gold extractions for the five grind size evaluation tests ranged from ~90 % to 94 %. The test results indicated that pre-aeration and lead nitrate improved the leach kinetics and gold extraction was essentially flat after 24 hours. Cyanide (NaCN) consumption decreased to 0.55 g/t (CN-19) from 1.23 g/t (CN-18) with the addition of a 2-hour pre-aeration stage.

The whole ore cyanidation test results confirmed that the gravity recoverable gold in the Comp 1 sample was cyanide leachable. Gold extractions were ~96-97 % (two tests), like the overall (gravity + cyanidation) recoveries.

Environmental testwork, which included modified acid base accounting (ABA) and net acid generation (NAG) tests, was completed on each of the main composites (heads and cyanidation residues). Results are presented at the end of this section.

13.2 Mineral Processing Testwork 2017

Following preliminary metallurgical tests conducted at SGS-Lakefield in Canada during the 4th quarter of 2016 on composite samples of HQ drill cores, additional tests to confirm the first results were carried out in the year 2017, still at SGS Lakefield. Preliminary variability tests were carried out on the different

zones. From HQ samples taken, 16 composites were assembled for variability testing. Thereafter, all composites in the same area were assembled to serve as feed to CIL tests.

The samples were from drill cores collected from Eleonore North, Central and South, Sophie II, and Lily areas.

Table 13-4 and Table 13-5 show the rock types and head grades from pyroanalysis tests.

Zone	Composite	Rock Type	Head Grade (g/t Au)
Sophie II	S-1	Shear zone	4.15
Sophie II	S-2	Amphibolite	1.66
Sophie II	S-3	Amphibolite and Quartz veins	0.49
Sophie II	S-4	Banded Iron Formation	0.43
Lily	S-5	Metasediments	1.22
Lily	S-6	Metasediments	1.16
Lily	S-7	Metasediments	0.50
Lily	S-8	Metasediments	0.88
Lily	S-9	Metasediments	0.95
Eleonore-N	S-10	Shear zone and quartz veins	0.82
Eleonore-N	S-11	Shear zone and quartz veins	4.36
Eleonore-S	S-12	Metagabbro	0.12
Eleonore-S	S-13	Metagabbro	0.70
Eleonore-C	S-14	Shear zone and quartz veins	8.84
Eleonore-C	S-15	Shear zone and quartz veins	11.5
Eleonore-C	S-16	Porphyre and quartz veins	0.18

Table 13-4: Head Grades

	Sample ID	Au, g/t	Ag, g/t	Var Sample	Au g¢t	Au gr/t	Bulk comp Au gift
	959	6,73	< 0.5	S1	4,15		
	962	0,25	< 0.5	S2	1,66	7	
	963	0,45	< 0.5				
	964	0,74	< 0.5	S3	0,49	7	
MS-SOPHIE	965	1,10	< 0.5			1,47	
	966	0,95	< 0.5				
	967	0,39	< 0.5				
	968	0,02	< 0.5				
	960	0,13	< 0.5	S4	0,43	7	
	961	1,12	< 0.5				
	951	0,48	< 0.5	S5	1,22		1
	952	1,72	0,6				
	955	0,66	< 0.5	S6	1,16	7	
	953	1,96	< 0.5				
	954	0,63	7,4				
MS-LILY	957	0,49	< 0.5	S7	0,50	7	
	9.56	0,90	< 0.5			0,88	
	958	2,80	0,6	S8	0,88		
	969	0,69	< 0.5	S9	0,95	7	
	970	1,19	< 0.5				
	971	1,20	< 0.5				0,96
	972	0,78	< 0.5				
	973	1,77	< 0.5				
	974	0,74	< 0.5	S10	0,82]
MS-ELEO-N	975	1,02	3,3	S11	4,36	1,98	
	976	3,36	1,7				
	979	samples mis	sing				
	980	samples mis	sing				
	981	samples mis	sing	S12	0,12		
MS-ELEO-S	982	samples mis	sing				
	983	samples mis	sing			0,54	
	984	2,30	< 0.5				
	977	0,24	< 0.5	S13	0,70		
	978	0,24	< 0.5				
	986	5,08	2,4	S14	8,84		
	987	0,21	1,0	S15	11,5		
	988	0,10	< 0.5				
MS-ELEO-C	989	18,4	2,8			4,49	
	990	samples mis	sing				
	991	samples mis	sing	S16	0,18		
	992	samples mis	sing				

Table 13-5: Head Grades (Samples vs Composites)

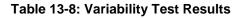
The program attempted to confirm the responses obtained during preliminary tests (2016) for the extraction of gold by gravity and cyanidation separation using the optimum conditions identified in the first program. Additional flotation tests were carried out to validate this option for a possible comparison study. It also included some grinding tests.

13.2.1 Grindability Test

The grinding program was performed on four composite samples and included an abrasion Bond test. It consisted of a Bond grindability test for the Ball Mills (BWI) and an abrasiveness (AI) test. Table 13-6 collects the results of each of the grindability and abrasiveness tests.

Samples	BWI (kWh/t)	Ai			
Sophie	13,3	0,358			
Lily	17,1	0,768			
Eleonore -C	17,5	0,558			
Eleonore - S	18,7	0.514			

Table 13-6: Grindability Summary


13.2.2 Parameters and Variability Tests

In 2017, gravimetric and cyanidation recovery tests were performed using parameters obtained in the optimum preliminary tests of 2016. Table 13-7 summarizes the parameters used. The set of variability tests (16 tests) were performed under the same conditions to verify the repeatability of the results, and to determine the retention time for CIL assays.

Parameters	Value
Grind Size	75 microns
Pulp Density	40 % solids w/w
Pre-aeration period	2 hours
Oxygen Concentration	5 to 8 mg/L
Cyanide Concentration	0.5 g/L
рН	10.5 à 11
Retention Time	48 h for Eleonore-S/C/N 30 h for Sophie et Lily
Carbon Concentration	15 g/L

Table 13-7: Gravimetric and cyanidation test parameters for variability testing

			CN	Feed Size		Addition		Reagent						Extractio	n / Re	covery		Au F	Residue,	a/t		Au Head, g/t	
Sample		Feed	Test	P ₈₀ , µm	kg/t of C			kg/t of CN					I (Unit)		Grav	CN	Grav + CN			9.			
			No.	F 80, µm	NaCN	CaO	NaCN (24)	NaCN (30)	NaCN (48)	CaO	6 h	24 h	30 h	48 h		-	Grav + Civ	Cut A	Cut B	Avg.	CN	Grav + CN	Direct
S1		G-4	1	75	1.05	0.77	0.30		0.46	0.77	64.0	87.9	87.2	88.2	27.4	64.0	91.4	0.29	0.31	0.30	2.55	3.50	4.15
S2	SOPHIE	G-5	2	64	0.99	1.08	0.21	0.23	0.40	1.08	65.4	95.3	95.2	94.4	33.0	63.2	96.2	0.03	0.02	0.03	0.44	0.65	1.66
S3		G-6	3	64	1.06	0.77	0.23	0.29	0.35	0.75	73.9	91.3	91.2	90.2	56.8	39.0	95.8	0.03	< 0.02	0.03	0.25	0.57	0.49
S4		G-7	4	88	1.21	0.87	0.42	0.42	0.68	0.85	62.4	84.6	84.5	83.5	46.7	44.5	91.2	0.06	0.07	0.07	0.39	0.72	0.43
	Zone Ave	rage		73	1.08	0.87	0.29	0.31	0.47	0.86	66.4	89.8	89.53	89.075	41	52.7	93.7	0.10	0.11	0.10	0.91	1.36	1.68
S5		G-8	5	75	1.01	0.75	0.24	0.26	0.42	0.74	71.3	83.9	83.7	82.9	49.5	41.9	91.4	0.07	0.08	0.08	0.44	0.86	1.22
S6		G-9	6	75	1.03	0.85	0.19	0.27	0.43	0.85	76.6	90.9	90.7	89.9	31.3	61.8	93.1	0.07	0.07	0.07	0.69	1.00	1.16
S7	LiLy	G-10	7	61	1.02	0.81	0.22	0.27	0.42	0.80	67.2	86.5	89.6	88.8	32.6	59.9	92.5	0.06	0.04	0.05	0.45	0.66	0.50
S8		G-11	8	82	1.02	1.02	0.06	0.06	0.08	0.99	53.8	89.0	90.7	93.7	22.1	73.0	95.1	0.06	0.08	0.07	1.12	1.43	0.88
S9		G-12	9	78	0.96	0.80	0.17	0.20	0.31	0.80	61.2	90.4	90.3	89.8	40.6	53.3	93.9	0.07	0.06	0.07	0.64	1.07	0.95
	Zone Ave	rage		74	1.01	0.85	0.18	0.25	0.33	0.84	66.0	88.1	89.0	89.0	35.2	58.0	93.2	0.07	0.07	0.07	0.67	1.00	0.94
S10	ELEO_N	G-13	10	68	1.00	0.78	0.20	0.24	0.35	0.78	57.0	93.1	87.2	91.4	61.9	34.8	96.7	0.02	0.03	0.03	0.29	0.77	0.82
S11		G-14	11	69	1.05	0.84	0.26	0.29	0.44	0.84		89.6	90.0	93.2		65.1	95.2	0.17	0.18	0.18	2.57	3.66	4.36
	Zone Ave			69	1.03	0.81	0.23	0.27	0.40	0.81		91.4	88.6	92.3		50.0	96.0	0.10	0.11	0.10	1.43	2.22	2.59
S12	ELE-S	G-15	12	70	0.93	0.82	0.18	0.18	0.88	0.81	29.0	77.8	80.8	96.8		77.2	97.4	0.03	0.03	0.03	0.93	1.16	0.12
S13		G-16	13	69	1.01	0.84	0.21	0.25	0.38	0.84		86.1	90.4	94.0	53	44.2	97.2	0.02	0.02	0.02	0.33	0.70	0.70
	Zone Ave			70	0.97	0.83	0.20	0.22	0.63	0.83		82.0	85.6	95.4	36.6	60.7	97.3	0.03	0.03	0.03	0.63	0.93	0.41
S14	ELEO-C	G-17	14	173	1.05	0.69	0.24	0.27	0.43	0.67		57.7	81.7	84.1		72.9	86.2	0.73	1.00	0.87	5.42	6.25	8.84
S14		G-17R	14R	59	1.11	1.40	0.25		0.44	0.98	85.0	89.0	84.1	93.9		62.5	95.9	0.35	0.37	0.36	5.86	8.78	8.84
S15		G-18	15	68	1.07	0.74	0.27	0.29	0.44	0.73			91.7	99.0		55.0	99.4	0.06	0.07	0.07	6.23	11.2	11.5
S16	7	G-19	16	82	0.93	0.63	0.19	0.19	0.34	0.58	84.6	93.1	92.9	92.0	85.6	13.2	98.8	0.03	0.02	0.03	0.31	2.16	0.18
	Zone Ave	rage		69.7	1.04	0.92	0.24	0.24	0.41	0.76	79.4	91.9	89.6	95.0	54.5	43.6	98.1 *	0.29	0.37	0.33	4.46	7.10	7.34
	Total Ave	rage		67 *	1.0	0.9	0.23	0.23	0.43	0.82	63.9	88.9	88.8	91.4	41.8	53.3	95.1	0.09	0.09	0.09	1.47	2.43	2.37

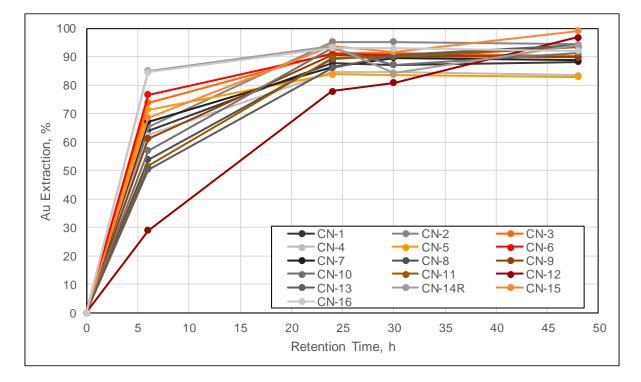


Figure 13-1: Leach Kinetics

The results of the variability tests confirmed the good response to the selected process. The results show a need of 48 hours of cyanidation for the Eleonore zone and 30 hours for the Sophie and Lily zones. These retention times were retained to conduct CIL tests on each zone composite. Table 13-8 and Table 13-9 summarize the results achieved.

		Cons. Re	agents	% Au Extraction/Recovery						
Composites	Ρ ₈₀ , μm	kg/t of CN	V Feed	CN (Unit)	CN (Unit)			Grav		
		NaCN	CaO	30 h	48 h	Grav	CN	+ CN		
MS-SOPHIE	68	0.36	0.81	88.0		64.0	31.7	95.7		
MS-LILY	78	0.34	1.29	89.8		51.5	43.6	95.1		
MS-ELEO-S	71	0.59	1.24		92.1	52.7	43.6	96.3		
MS-ELEO-C	78	0.50	0.80		97.5	23.7	74.4	98.1		
MS-ELEO-N	70	0.65	0.90		93.2	31.9	63.5	95.4		

Table 13-9: CIL Results

The results of gold recovery by gravity confirm the results obtained in the first variability tests and the correct response to the CIL process. The results also validate that the time requirements of cyanidation differ for the different zones. The Sophie and Lily composites obtained a gravity circuit recovery of 64 % and 51.5 %, respectively. The Eleonore South, Central and North Composites obtained a gravity circuit recovery circuit recovery ranging from 23.7 % to 52.7 %. These results once again justify the need to consider a gravimetric separation circuit in the overall treatment scheme.

The residue samples obtained from the gravity testwork responded well to cyanidation process and to the overall recovery process (gravity separation + cyanidation). The gold recovery rates ranged from 95.1 % to 98.1 % for an average of \sim 96 %. This is an improvement of one percent compared to the 2016 testwork. These results validated the selection of the process flow diagrams for this project at this point.

13.2.3 Gravity/flotation/concentrate leach alternative

Gravity and flotation tests were also carried out on a master composite made from the different zones. The response to this process was not as good as in the initial tests as shown in the next table. On the other hand, the gold content of the composite was much lower than that of the series of tests performed in 2016.

Sample	Feed	ed Test Te		P ₈₀	Reagents	Product	Weight	Assays, g/t, %		% Distribution		
	From	No.	Size kg	µm (Ro Tail)			%	Au	S	Au		s
	Test									Flot (Unit)	Grav+Flot	3
Bulk	G-1	F-1	2	275	60 g/t PAX	Mozley Conc					49,3	
Master					15 g/t 208	Rougher Conc 1	2,8	17,0	20,7	62,2	80,8	66,7
Comp					15 g/t MIBC	Rougher Conc 1-2	4,1	13,1	16,2	71,0	85,3	77,4
						Rougher Conc 1-3	5,6	10,1	12,8	73,7	86,6	82,3
					Rgh = 20 min	Rougher Conc 1-4	6,7	8,50	10,8	74,9	87,3	83,8
					5	Rougher Conc 1-5	7,8	7,42	9,45	75,8	87,7	85,1
						Rougher Tail	92,2	0,20	0,14	24,2	12,3	14,9
						Head (calculated)	100,0	0,76	0,87	100,0	100,0	100,0
Bulk	G-20	F-4	2	197	60 g/t PAX	Mozley Conc					29,8	
Master					15 q/t 208	Rougher Conc 1	2,6	11,3	20,8	53,6	67,5	64,3
Comp					20 g/t MIBC	Rougher Conc 1-2	4,0	9,17	17,4	65,6	75,9	80,9
					Ū	Rougher Conc 1-3	4,9	7,77	15,0	68,4	77,8	86,1
					Rgh = 20 min	Rougher Conc 1-4	5,4	7,16	13,9	69,4	78,5	87,6
					-	Rougher Conc 1-5	6,0	6,58	12,8	70,4	79,2	89,0
						Rougher Tail	94,0	0,18	0,10	29,6	20,8	11,0
						Head (calculated)	100,0	0,56	0,85	100,0	100,0	100,0
Bulk	G-2	F-2	2	153	60 g/t PAX	Mozley Conc					52,8	
Master					15 g/t 208	Rougher Conc 1	3,1	13,7	20,5	70,5	86,1	72,4
Comp					15 g/t MIBC	Rougher Conc 1-2	4,5	10,5	16,6	78,0	89,6	84,3
						Rougher Conc 1-3	5,9	8,22	13,4	80,1	90,6	89,5
					Rgh = 20 min	Rougher Conc 1-4	6,8	7,15	11,7	81,1	91,1	90,9
						Rougher Conc 1-5	7,8	6,27	10,3	81,6	91,3	91,6
						Rougher Tail	92,2	0,12	0,08	18,4	8,7	8,4
						Head (calculated)	100,0	0,60	0,88	100,0	100,0	100,0
Bulk	G-3	F-3	2	80	60 g/t PAX	Mozley Conc					26,6	
Master					15 g/t 208	Rougher Conc 1	2,5	16,8	21,6	68,8	77,1	61,2
Comp					15 g/t MIBC	Rougher Conc 1-2	4,2	12,6	17,4	84,3	88,5	80,5
						Rougher Conc 1-3	5,7	9,44	14,3	86,1	89,8	90,4
					Rgh = 20 min	Rougher Conc 1-4	7,9	6,85	10,6	86,9	90,4	93,5
						Rougher Conc 1-5	9,6	5,73	8,90	88,4	91,4	95,0
						Rougher Tail	90,4	0,08	0,05	11,6	8,6	5,0
						Head (calculated)	100,0	0,62	0,90	100,0	100,0	100,0

Taking these results into account, another composite was made on Eleonor alone using some of the remaining samples from the first series of tests (composites 1 and 6) as well as what was left of this campaign. The results of gravity/flotation (Table 13-10) confirmed the results of the first series of tests of 2016. These results indicate a good recovery by this process for an initial crushing granulometry in the range of 125 to 150 microns.

Sample	Feed	Test	Test	P ₈₀	Reagents	Product	Weight	Assays	s, g/t, %	%	Dis tribution	
	From	No.	Size	μm			96		s		Au	s
	Test		kg	(Ro Tail)				Au	5	Flot (Unit)	Grav+Flot	5
MS-ELEO-C	G-26	F-5	1	152	60 g/t PAX	Mozley Conc					45,1	
					15 g/t 208	Rougher Conc 1	2,4	51,9	31,8	68,3	82,6	86,0
					15 g/t MBC	Rougher Conc 1-2	3,6	38,5	22,5	76,9	87,3	92,5
					-	Rougher Conc 1-3	4,9	29,5	16,8	80,6	89,3	94,5
					Rgh = 20 min	Rougher Conc 1-4	5,9	25,1	14,2	82,3	90,3	95,3
						Rougher Conc 1-5	6,7	22,4	12,6	82,9	90,6	95,7
						Rougher Tail	93,3	0,33	0,04	17,1	9,4	4,3
						Head (calculated)	100,0	1,80	0,88	100,0	100,0	100,0
MS-ELEO-C	G-27	F-6	1	121	60 g/t PAX	Mozley Conc					72,0	
					15 g/t 208	Rougher Conc 1	2,5	35,7	29,5	70,5	91,7	86,4
					20 g/t MBC	Rougher Conc 1-2	3,9	25,0	19,9	78,2	93,9	92,6
						Rougher Conc 1-3	5,2	19,5	15,3	80,9	94,6	94,3
					Rgh = 20 min	Rougher Conc 1-4	6,5	16,1	12,4	83,1	95,3	95,2
						Rougher Conc 1-5	7,8	13,6	10,4	83,9	95,5	95,7
						Rougher Tail	92,2	0,22	0,04	16,1	4,5	4,3
						Head (calculated)	100,0	1,28	0,85	100,0	100,0	100,0
MS-ELEO-C	G-28	F-7	1	77	60 g/t PAX	Mozley Conc					69,1	
					15 g/t 208	Rougher Conc 1	2,3	38,7	29,4	74,7	92,2	85,5
					15 g/t MBC	Rougher Conc 1-2	3,8	26,2	19,9	81,6	94,3	93,2
						Rougher Conc 1-3	5,4	19,1	14,4	84,6	95,3	96,0
					Rgh = 20 min	Rougher Conc 1-4	6,9	15,0	11,2	86,3	95,8	97,2
						Rougher Conc 1-5	8,3	12,7	9,5	87,1	96,0	97,7
						Rougher Tail	91,7	0,17	0,02	12,9	4,0	2,3
						Head (calculated)	100,0	1,21	0,80	100,0	100,0	100,0

A bulk flotation test has been performed to produce concentrate for the concentrate leach test at a selected grind target size of 120 microns. However, the grind size of the flotation tail was at a coarser grind size (140 microns) which can explain the lower mass pull and gold recovery achieved. It was decided to regrind the flotation tail to the target grind size of 120 microns and perform additional flotation tests. The overall mass pull was 6.6 % with an overall gold recovery of 96.7 %.

Feed	Test	Test	P ₈₀	Reagents	Product	Weight	Assays, g/t, %		% [
From	No.	Size	μm			%	% Au		A	u	s
Test		kg					~~	S	Flot (Unit)	Grav+Flot	° I
G-29	F-8	10	140	60 g/t PAX	Mozley Conc					67.6	
			(Ro Tail)	15 g/t 208	Rougher Conc 1	5.7	62.3	23.8	87.5	28.3	93.5
				15 g/t MIBC	Rougher Tail	94.3	0.54	0.10	12.5	4.1	6.5
				Rgh = 40 m in	Head (calculated)	100.0	4.06	1.45	100.0	100.0	100.0
F-8	F-9	8.7	120	10 g/t PAX	Gravity + Flotation	G-29 / F-	-8)			95.9	
Ro			(Feed)	5 g/t 208	Rougher Conc 1	0.9	11.3		18.3	0.8	
Tail				9 g/t MIBC	Rougher Tail	99.1	0.45	0.08	81.7	3.3	
				Rgh = 15 m in	Head (calculated)	100.0	0.54		100.0	100.0	

The initial leach was done on the concentrate produced at a coarser grind (140 microns) with an overall gold recovery of 92.9 %. Because the leach residue was high (6.6 g/t) and the target grind size was not

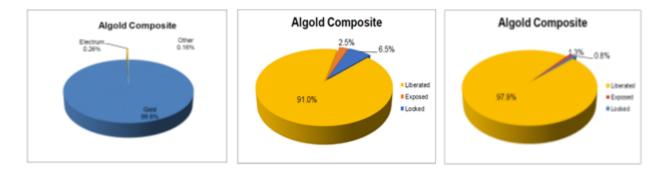
achieved initially, the flotation concentrate recovered from the second flotation and the leach tail were combined and reground to a target grind size of 74 microns to simulate concentrate regrind and leach. The material was leached for an additional 48 hours. Overall gold recovery achieved was 94.9 %. These combined tests represent an attempt to simulate gravity/flotation done at a primary grind size of 120 microns followed by concentrate regrinding to 74 microns and completed with high intensity concentrate leaching. Additional flotation tests will be requested if this option is selected in future studies.

Table 13-13: Flotation Concentration C	yanidation Test Results
--	-------------------------

	CN	Feed	Reagent Cons.		% Au Extraction / Recovery									Au	Au
Feed			kg/t of C NaCN			CN (48 h	Unit) 72 h	96 h	Grav	Flot (Unit)	Flot	CN	O'All	Residue g/t	Calc. Head g/t
G-29 / F-8	22	123 ^	4.23	1.35	89.9	87.6	90.7	89.4	67.6	87.5	28.4	25.3	92.9	6.60	62.3
G-29 / F-8 & F-9	23	73	1.38	0.94		95 **			67.6	88.7	28.7	27.3	94.9	2.96	7.48

* F-8 Flotation Concentrate Assay

^ CN-22 Residue Pao was 123 µm (F-8 Ro Tail Pao was 140 µm)


** Increaed (overall) leach extraction

13.2.4 Gold deportment study

A gold deportment study was performed. Most of the gold mineral are classified gold (less than 20 % silver) with a silver content averaging 10.0 % Ag and following by a small quantity of electrum. Most of the gold is liberated and should be available to gold dissolution which is in line with the leach CN testwork results.

Sample ID	Mineral ID		Chemical Composition (SEM-EDS, wt%)							
Sample ID	Millelalib	n	Fe	Ag	Au	Pb	Те			
	Gold	155	0,8	10,6	88,6	0,0	0,0			
	Electrum	4	3,1	27,1	69,8	0,0	0,0			
Algold Composite	Kustelite	1	0,8	64,0	35,2	0,0	0,0			
	Petzite	1	0,0	41,5	27,0	0,0	31,5			
	Au-Ag-Pb	1	2,6	15,0	54,6	27,8	0,0			

Table 13-14: Chemical Gold Composition

Figure 13-2: Overall Microscopic Gold Distribution – Weighted to Gold in Product – By Surface Area

Algold Composite	Association	No. of Observed Grains	Size Range (µm)	Average Size (µm)	Algold	Association	No. of Observed	Total Observed	% Observed Surface Area	Overall Gold
SP Te 1	Liberated	71	0.6 - 174.5	24.6 6.00	Composite		Grains	Surface Area	Fraction	Distribution
	Exposed		2.0 - 18.1					(um2)		
	Locked	38	0.6 - 14.2	3.47	SP Tip 1/Tip 2	Liberated	116	362,221	98.3	62.8
	Subhitel	117		18.5	12.53.5420.54144	Exposed	27	4,113	1.12	0.71
6P Te 2	Liberated	45	0.6 - 414.3	44.4		Locked	76	2.244	0.61	0.39
	Exposed	19	0.8 - 64.8	6.57	1	Sub tota/	219	368,578	100	62.9
	Locked	37	0.6 - 13.2	3.77	SP Mag	Liberated	0	0.00	0.00	0.00
	Subtolal	101		22.4		Exposed	2	15.5	25.4	0.20
OP Meg.	Uberated	0	0.0 - 0.0	194 J.		Locked	2	45.6	74.6	0.59
	Exposed	2	2.6 - 3.6	3.11		Sub total	4	61.1	100	0.78
	Locked	2	1.5 - 7.5	4.48	SP Sul 1	Liberated	5	1,720	74.0	2.79
	Subtotal	4		3.80		Exposed	3	133	5.72	0.22
SP Sul 1	Liberated	5	0.8 - 35.5	16.8		Locked	20	470	20.2	0.76
	Exposed	3	1.0 + 12.9	5.01		Sub tota/	20	2,322	100	3,77
	Locked	20	0.8 - 12.5	3.98	5P 5ul 2	Liberated	20	6,166	89.9	5.77
	Subtotal	28		0.37	DP DM 2		11	514		0.48
SP Bul 2	Liberated	2	61.5 - 63.8	62.6		Exposed			7.49	
	Exposed	11	1.3 - 15.2	6.30		Locked	16	176	2.57	0.16
	Locked	18	0.0 - 0.5	2.72		Sub total	29	6.855	100	6.41
	Subtotal	29		6.21	SP Md	Liberated	1	0.75	42.9	1.55
SP Md	Liberated	1	1.0 + 1.0	0.98		Exposed	0	0.00	0.00	0.00
	Exposed	0	0.0 - 0.0			Locked	1	1.00	57.1	2.07
-	Locked	1	1.1 - 1.1	1.13		Sub total	2	1,75	100	3.61
	Subtotal	2		1.05	SP Tail	Liberated	5	101	64.4	7.04
SP Tail	Liberated	5	2.5 - 6.5	4.83		Exposed	5	19.3	12.3	1.35
	Exposed	5	0.6 - 3.8	1.95		Locked	3	36.3	23.2	2.54
	Locked	3	2.3 - 5.6	3.66		Sub total	13	156	100	10.9
	Subtotal	13		3.45	HLS Float	Liberated	2	23.8	100.00	10.5
HLS Float	Liberated	2	3.0 - 4.6	3.80	100000000000000000000000000000000000000	Exposed	ō	0.00	0.00	0.00
	Exposed	0	0.0 - 0.0			Locked	0	0	0.0	0.0
	Locked	1	52.2 - 52.2	32.2		Sub total	2	24	100	10.5
5	Subtolal	3		13.5	TOTAL	Liberated	131	370,232	97.9	91.0
TOTAL	Liberated	131	0.6 - 414.3	30.4	TUTAL		45	4.794		
	Exposed	48	0.6 - 64.8	6.71		Exposed			1.3	2.50
	Locked	118	0.6 - 32.2	3.79		Locked	118	2.972	0.8	6.55
	Total	297		15.8		Total	297	377,998	100	100

Table 13-15: Gold Mineral Type and Abundance and Microscopic Distribution

13.3 Preliminary Environmental Tests

Environmental geochemistry tests were conducted in parallel with the preliminary metallurgical tests at the end of 2016 at the SGS laboratory in Lakefield, Ontario. Four composite samples from drill cores and representative of mineralized zones were used for metallurgical and environmental testing.

Composite	Zone	Description
1	Eleonore	Quartz Veins with Metasediments
2	Lily	Metasediments
3	Sophie II	Altered Banded Iron Formation
4	Sophie I	Quartz Veins with Banded Iron Formation

Table 13-16: Composites Samples

Environmental geochemistry tests were carried out on untreated ground composite samples and on tailings from the laboratory treatment of these composite samples. A total of eight samples were therefore subjected to environmental geochemical testing. These samples shall be deemed to be representative of the ore and the tailings to be produced respectively. However, it must be noted that this quantity of samples is insufficient to eliminate the uncertainty surrounding the production potential of acid mine drainage. A more substantial geochemical characterization campaign will be required to support a feasibility study. It should also be noted that the composite samples tested do not represent the sterile rocks that will have to be accumulated near the pits.

Environmental testwork, which included modified acid base accounting (ABA) and net acid generation (NAG) tests, was completed on each of the main composites (heads and cyanidation residues).

13.3.1 Modified Acid Base Accounting

The results of static tests for the determination of the acid-base balance are summarized in Table 13-17. They first revealed some sulphide concentrations in the ore and tailings, except for the Sophie II composite. Acidity generation is generally considered a potential problem when the sulphur concentration exceeds 0.3 %. The potential for crude acid generation (AP) is therefore present with sulfur concentrations causing predicted values of several tens of kilograms of CaCO₃ equivalent consumption per ton of tailings. On the other hand, the tests also revealed the presence of an interesting neutralization capacity (NP) with values of several tens of kilograms of equivalent CaCO₃ per ton. In addition, a significant proportion of this neutralization capacity comes from carbonates, which is reassuring in kinetic terms because they react quickly.

Parameters	Unit		Minera	lized Zones			Resi	dues	
		Eleonore	Lily	Sophie II	Sophie I	Eleonore	Lily	Sophie II	Sophie I
Sulfur	%	2.17	1.02	0.164	3.86	1.68	1.15	0.104	3.81
AP CaCO ₃	kg/t	54.7	32.8	4.69	91.9	47.2	33.8	3.12	106
NP CaCO ₃	kg/t	117	45	59	100	123	44	64	98
NNP CaCO ₃	kg/t	62.5	12.1	54.3	8.22	76.2	10.8	61.3	-7.95
NP/AP		2.14	1.37	12.6	1.09	2.62	1.32	20.6	0.93

Table 13-17: Results – Static Tests

The net potential for neutralization of composite tailings samples is therefore positive except for the Sophie I sample. However, NP/AP ratios between neutralization potential and acidification potential are less than 3 except for Sophie II, which is generally considered insufficient to determine the absence of risk of acid mine drainage production. In summary, these results tell us that we have the tailings of Sophie I which will be potentially acid-generating, the tailings of Eleonor and Lily which may be so and the tailings of Sophie II which probably will not be.

13.3.2 Net Acid Generation Test

The results of the standard net acidity generation (NAG) tests on the same composite samples are summarized in Table 13-18.

Parameters	Unit	N	lineraliz	ed Zone	S	Residues					
		Eleonore	Lily	Sophie II	Sophie I	Eleonore	Lily	Sophie II	Sophie I		
NAG pH 4.5 CaCO ₃	kg/t	0	0	0	0	0	0	0	0		
NAG pH 7.0 CaCO ₃	kg/t	0	0	0	0	0	0	0	0		

These standard tests do not reveal any net generation of acid after being subjected to aggressive oxidation. However, the high sulphide concentrations of the samples of Eleanor, Lily, and Sophie I would have required more than a single aliquot of hydrogen peroxide for the complete oxidation of all sulphides present. So, these results are not conclusive. Only the results of the samples from Sophie II indicate with sufficient certainty that the residues of this deposit will not be producing acidic mining drainage. Sequential NAG tests will be required to determine the true potential for acidic drainage of residues.

13.3.3 Water Quality

The analysis of the residual water after the NAG test can give us an indication of the quality of the drainage water even in the absence of acidification. Due to incomplete oxidation except for Sophie II samples, a significant level of uncertainty must be noted in these preliminary results. These results indicate, for the time being, that all the parameters of interest are below the usual release criteria.

Our recommendations for the next geochemical characterization campaign are therefore:

- Use a larger number of samples
- Include representative samples of sterile rocks
- Continue the NAG tests sequentially until complete oxidation
- Doing standard tests in wet cells

14. Mineral Resource Estimates

Resource estimates on the Tijirit deposit were estimated with an effective date of January 19, 2018 for the Eleonore, Sophie I-II-III and Lily zones. These numbers have been publicly disclosed February 26, 2018 in the press release: "Algold Increases Gold Resources at Tijirit". This report explains additional details about this updated resource estimation.

14.1 Drill Hole Database

Algold provided SGS Geostat with the electronic version of the drilling campaign data. The data was imported into a Geobase format emphasizing on the collar identifications, deviations, lithologies and assay results (see Table 14-1).

Field	Number of entries	Length (m)
Collars [Drillholes (RC and DDH) and sampled trenches]	983	112,343
Deviations	6,975	
Lithologies	113,544	
Assays	76,297	102,567

Table 14-1: Summary of Database Entries Used for the Estimates

A total of 627 RC drillholes and 91 Diamond-drill holes are included in the database, along with 265 Trenches. (see Table 14-2). Drilling used for the resource estimate totals 112,343 m. All holes were surveyed using a Reflex downhole orientation instrument and appear to be sampled consistently every 50 m or less down the hole. Drill holes and trenches are surveyed using the UTM projection, WGS84 datum 28 northern hemisphere.

Note that 4 drillholes (1 trench, 2 RC and 1 DDH) are not accounted for because they do not contain assays that allow for their use in the resource estimation.

Hole Type	Number of Drillholes	Sum of Length (m)	Number of Assays	Sum of Assayed Length (m)
DDH	91	14,704	10,276	10,706
RC	627	80,549	58,675	80,337
Trenches	265	17,090	7,346	11,524
Total	983	112,343	76,297	102,567

The database contains 76,297 assay results for gold. A total of 10,276 assays are from diamond drill rigs and represent 10,706 metres, and 58,675 assays are from RC drillholes representing 80,337 drilled metres, and 7,346 assays come from Trenches and represent 11,524 trenched metres (seeTable 14-2).

Assays were made into mineralized intervals (MI). A modeling cut-off grade of 0.3 g/t Au, a minimum thickness of 2 metres along hole and a minimum accumulation of 1.2 m.g/t were used to delineate mineralized volumes. There are 689 MIs. The total length for the MIs is of 4,491.7 m. The shortest MIs created are of 2 m and there are 71 of them. The longest MI created is of 94 m and is located in the Lily mineralized zone.

14.1 Mineralized Volumes (Envelopes)

Some mineralized volumes were modeled over the MIs. The process involved the creation of closed polygons on section views. The sections are not always on a regular grid as the drilling is not always on a standard azimuth and the drillhole spacing is not perfectly even. There are more than 900 polygons that were interpreted on about 300 sections. There are currently 220 mineralized volumes (envelopes) in the Tijirit project. There are 134 of them in Eleonore, 28 in Lily and 58 in Sophie I, II and III. The volumes under topography are listed in Table 14-3 along with the number of holes that pierce these volumes.

Table 14-3: List of the Mineralized Volumes and the Count of Mineralized Intervals
--

	# of Mis	Vol		# of Mis	Vol		# of Mis	Vol		# of Mis	Vol
Name	(Holes Count)	(m ³)	Name	(Holes Count)	(m ³)	Name	(Holes Count)	(m ³)	Name	(Holes Count)	(m ³)
Eleonore A	27	207,675	Eleonore Ouest 6	1	16,205	Eleonore ss 32	1	6,624	Sophie1 A 5	1	8,268
Eleonore B	3	4,525	Eleonore_Ouest_7	1	16,880	Eleonore ss 33	1	6,003	Sophie1 A 6	1	7,387
Eleonore C	3	36,967	Eleonore Ouest 8	1	20,402	Eleonore ss 34	2	22,750	Sophie1 B	2	52,215
Eleonore D	6	30,534	Eleonore Ouest 9	1	19,713	Eleonore ss 35	1	9,446	Sophie1_C	7	65,958
Eleonore E	6	35,607	Eleonore P	1	9,569	Eleonore ss 36	3	31,509	Sophie1 D	3	20,425
Eleonore F	6	30,278	Eleonore Q	2	20,715	Eleonore ss 37	2	48,560	Sophie1 E	5	34,435
Eleonore G	2	23,229	Eleonore R	1	15,767	Eleonore ss 38	2	29,218	Sophie1 F	3	47,964
Eleonore H	6	54,671	Eleonore S	4	35,722	Eleonore ss 39	1	11,834	Sophie1_G	1	4,092
Eleonore I	1	8,358	Eleonore s 1	5	57,543	Eleonore ss 40	1	8,554	Sophie1 H	1	6,225
Eleonore J	1	8,757	Eleonore_s_10	1	7,728	Eleonore ss 41	2	23,192	Sophie2 A	4	53,495
Eleonore K	5	32,675	Eleonore s 11	1	7,903	Eleonore ss 42	1	15,902	Sophie2 A 1	1	2,258
Eleonore L	1	15,639	Eleonore s 12	1	22,087	Eleonore ss 43	1	11,698	Sophie2 A 2	1	3,602
Eleonore M	3	25,144	Eleonore s 13	1	6,744	Eleonore ss 44	1	14,269	Sophie2 A 3	1	4,058
Eleonore N	2	7,675	Eleonore s 14	2	53.747	Eleonore ss 45	1	7,986	Sophie2_A_S	25	375,236
Eleonore Nord 01	14	160,609	Eleonore s 15	2	31,529	Eleonore ss 46	1	18,176	Sophie2 B 1	1	6,803
Eleonore Nord_01	9	100,009		1	11.634		2	70.034	Sophie2_B_1	4	69.972
	-	, -	Eleonore_s_16	1 7	,	Eleonore_ss_47					
Eleonore_Nord_03	6	95,005	Eleonore_s_2		68,512	Eleonore_ss_48	1	15,322	Sophie2_D	2	27,932
Eleonore_Nord_04	6 5	54,114	Eleonore_s_3	4	45,476	Eleonore_ss_49	1	12,238	Sophie2_E_1	4	10,069
Eleonore_Nord_05		33,200	Eleonore_s_4		34,153	Eleonore_ss_50	1	14,342	Sophie2_E_2		12,674
Eleonore_Nord_06	3	25,786	Eleonore_s_5	10	75,119	Eleonore_T	1	15,275	Sophie2_F	4	28,013
Eleonore_Nord_07	4	32,921	Eleonore_s_6	1	15,663	Eleonore_U	1	59,970	Sophie2_G	9	115,506
Eleonore_Nord_08	2	24,119	Eleonore_s_7	1	7,298	Eleonore_V	1	5,444	Sophie2_H	13	195,165
Eleonore_Nord_09	2	35,199	Eleonore_s_8	1	8,659	Eleonore_W	1	10,274	Sophie2_H_2	1	5,937
Eleonore_Nord_10	3	18,561	Eleonore_s_9	5	10,750	Eleonore_X	1	6,246	Sophie2_I	5	137,762
Eleonore_Nord_11	1	20,954	Eleonore_ss_01	12	89,202	Lily_1	1	22,171	Sophie2_J	2	975
Eleonore_Nord_12	1	13,007	Eleonore_ss_02	6	42,586	Lily_2	1	10,965	Sophie2_K	5	42,962
Eleonore_Nord_13	2	59,537	Eleonore_ss_03	1	24,578	Lily_3	1	16,546	Sophie2_L	1	6,560
Eleonore_Nord_14	1	19,512	Eleonore_ss_04	19	194,070	Lily_A	3	144,254	Sophie2_M	1	26,312
Eleonore_Nord_15	4	25,090	Eleonore_ss_05	4	43,510	Lily_B	4	362,352	Sophie2_N	3	62,948
Eleonore_Nord_16	3	26,661	Eleonore_ss_06	3	19,737	Lily_C	10	1,739,469	Sophie2_O	1	12,287
Eleonore_Nord_17	1	10,593	Eleonore_ss_07	3	24,458	Lily_D	29	1,429,983	Sophie2_P	1	7,706
Eleonore_Nord_18	1	5,326	Eleonore_ss_08	1	14,517	Lily_E	3	11,309	Sophie2_P_2	1	7,706
Eleonore_Nord_19	2	11,486	Eleonore_ss_09	1	7,426	Lily_F	1	5,458	Sophie2_Q	1	9,042
Eleonore_Nord_20	1	8,398	Eleonore_ss_10	2	18,164	Lily_G	18	1,462,870	Sophie2_R	1	9,738
Eleonore_Nord_21	2	11,411	Eleonore_ss_11	5	88,770	Lily_H	3	113,249	Sophie2_S	1	16,024
Eleonore_Nord_22	1	10,738	Eleonore_ss_12	4	51,765	Lily_I	1	5,138	Sophie2_T	2	44,861
Eleonore_Nord_23	1	6,832	Eleonore_ss_13	2	14,202	Lily_J	5	68,483	Sophie3_A	23	2,632,966
Eleonore_Nord_24	1	6,036	Eleonore_ss_14	1	4,047	Lily_K	4	23,106	Sophie3_B	3	12,690
Eleonore_Nord_25	4	28,582	Eleonore_ss_15	1	40,147	Lily_L	10	440,170	Sophie3_C	3	23,663
Eleonore_Nord_26	1	7,603	Eleonore_ss_16	4	103,583	Lily_M	2	29,515	Sophie3_C1	1	19,196
Eleonore_Nord_27	2	8,728	Eleonore_ss_17	6	98,657	Lily_N	5	201,003	Sophie3_C2	1	3,549
Eleonore_Nord_28	1	16,543	Eleonore_ss_18	1	55,931	Lily_O	1	36,644	Sophie3_D	8	390,988
Eleonore_Nord_29	1	4,092	Eleonore_ss_19	2	7,715	Lily_P	1	7,669	Sophie3_D_2	1	21,242
Eleonore_Nord_30	1	22,186	Eleonore_ss_20	1	5,095	Lily_Q	1	18,513	Sophie3_E	1	8,667
Eleonore_Nord_31	1	9,454	Eleonore_ss_21	1	4,267	Lily_R	4	94,940	Sophie3_F	1	7,594
Eleonore_Nord_32	1	17,203	Eleonore_ss_22	1	3,303	Lily_S	1	25,158	Sophie3_G	1	5,023
Eleonore_Nord_33	1	5,216	Eleonore_ss_23	1	2,806	Lily_T	1	30,294	Sophie3_H	1	4,723
Eleonore Nord 34	1	11,083	Eleonore ss 24	1	16,728	Lily_U	1	19,464	Sophie3 I	1	3,962
Eleonore_O	2	35,180	Eleonore ss 25	1	17,264	Lily_V	1	11,062	Sophie3 J	1	11,883
Eleonore Ouest 1	8	123,164	Eleonore ss 26	1	19,990	Lily X	2	55,709	Sophie3 K	2	37,988
Eleonore Ouest 11	2	36,632	Eleonore ss 27	9	102,620	Lily Y	2	15,384	Sophie3 L	2	33,020
Eleonore_Ouest_11	5	51,616	Eleonore ss 28	5	41.013	Lily Z	2	35,443	Sophie3 M	4	73,404
Eleonore Ouest 3	2	42,384	Eleonore_ss_28	1	6,115	Sophie1 A	5	140,886	Sophie3 N	4	13,280
Eleonore Ouest 4	2	42,384	Eleonore ss 30	7	6,115	Sophie1_A	4	67,645	Sophie3_N Sophie3 West A	2	38,537
Eleonore_Ouest_5	1	17,250	Eleonore_ss_30	2	27,573	Sophie1_A_4	4	6,117	Sophie3 West B	1	20,491
Liconore_ouest_5	1 I	17,230	Lieonore_55_31	4	21,313	Sophile1_A_4	1	0,11/	TOTAL	689	15,810,010
									IUTAL	689	15,810,010

14.2 Composite Data

The assays inside MIs have a total length of 4,491.5 m. There are 2,911 assays at 1 m or less in length (totaling 2,709.36 m in length), 68 assays of 1.5 m length (totaling 102.05 m in length), 827 assays of 2 m length (totaling 1,654 m in length) and a single assay of 3 m length. Composites have been created inside mineralized intervals (MI). The "round closest" setting have been used to eliminate the problem of remainders. A 2-m long MI produced a single composite while a 3-m or 4-m produced 2 composites and a 5 m or 6 m long MI produced 3 composites and so on. The resulting 2,340 composites have a length between 1.37 m and 2.65 m. There are 0.6 % of the composites (14) that are under 1.5 m and three

composites over 2.5 m. The other composites have lengths between 1.5 m and 2.5 m, which is very acceptable.

There are 2,340 composites in total. The composites were loaded into Genesis, with Au and Au_Cap and extracted by Tags, one for each of the 220 zones. Table 14-4 and Table 14-5 show the composite statistics by zone for Au and Au cap respectively

Statistic	s Composit	es Au (g	g/t)			
	Eleonore	Lily	Sophie I	Sophie II	Sophie III	Total
Count	799	722	75	397	347	2,340
Min	0.005	0.005	0.005	0.005	0.005	0.005
Max	150.69	20.90	17.70	24.90	5.02	150.69
Mean	2.38	0.64	1.60	1.12	0.50	1.32
Median	0.74	0.41	0.81	0.63	0.37	0.52
Stdev	7.74	1.10	2.51	1.96	0.58	4.73

Table 14-4: Statistics on the Composites (Au) for Each Major Zone

Table 14-5: Statistics on the Composites (Au Cap) for Each Major Zone

Statistic	s Composit	es Au C	ap (g/t)			
	Eleonore	Lily	Sophie I	Sophie II	Sophie III	Total
Count	799	722	75	397	347	2,340
Min	0.005	0.005	0.005	0.005	0.005	0.005
Max	45.00	6.00	10.00	10.00	3.50	45.00
Mean	2.15	0.60	1.50	1.06	0.49	1.22
Median	0.74	0.41	0.81	0.63	0.37	0.52
Stdev	4.91	0.66	1.93	1.40	0.51	3.06

14.3 Capping

The capping study has found very nuggety gold and therefore while few composites are capped, the impact on gold content can be significant in some of the zones. Eleonore: 4 composite capped (9 % of the gold lost), Lily_G: 1 composite capped (22 % of the gold lost), Lily other than Lily_G: 2 composites capped (3 % of the gold lost), Sophie I-II: 4 composites capped (6 % of the gold lost), Sophie III: 3

composite capped (2 % of the gold lost). These gold losses are indicative and only based on composite statistics. The Table 14-6 shows the details of the capping.

Zone	Capping Zone	Count	Max Au (g/t)	Au Capping Grade (g/t)	Capped Count	Gold Loss	Mean Au (g/t)	Mean Au Cap (g/t)
Eleonore	All	799	150.69	45	4	-9 %	2.38	2.15
Lily	All but G	609	11.26	6	2	-3 %	0.63	0.61
Lity	G	113	20.90	4	1	-22 %	0.69	0.54
Sophie I- II	All	472	24.90	10	4	-6 %	1.20	1.13
Sophie III	All	347	5.02	3.5	3	-2 %	0.50	0.49
То	tal	2,340	150.69	Variable	14	-8 %	1.32	1.22

Table 14-6: Capping and Gold Loss Based on Composites

14.4 Density

The density used for the estimation of the resource is 2.00 t/m³ for saprolite and 2.7 t/m³ for fresh rock in the Lily zone, 2.8 t/m³ in the Sophie III zone, 2.85 t/m³ in the Sophie II zone, 3.0 t/m³ in the Sophie I zone and 2.86 t/m³ in the Eleonore zone.

In 2016-17, there were 2,570 density measurements made by Algold. About 2,464 are from fresh rock, the others are from oxidized areas with a lower density than normal. SGS Geostat has decided to use a density of 2.00 t/m³ for all oxidized material as it is a reasonable value and there is no representative data for this material at this stage of the project. Indeed, it is very difficult to measure the density of a material that does not have good recovery during diamond drilling.

In 2016, SGS used density measurements available from the work of the previous owners of the project. It was calculated that the method used (water displacement) had a significant error to it (\pm 0.2 t/m³) and that new data was required. SGS received 560 density measurements done on the 2016 diamond drillholes. On December 11, 2016, SGS received 560 density measurements from the 2016 diamond drill. The method used was the weight in air (W_A) versus the weight in water (W_W). The density (D) is then calculated with the formula: D = W_A / (W_A-W_W). The weight measurements have a precision of 1 g, the minimum sample weight was 388 g and the mean weight was 1,849 g. SGS estimates the precision of the method to be at least of \pm 0.1 t/m³ but in general around \pm 0.01 t/m³. The method employed in 2016 for the assessment of the density is adequate. The saprolite data was separated from the fresher rock material. This saprolite has more variable density data and it was decided to use 2.00 for the density of the saprolite material in the model. It is a reasonable value. The densities statistics for older data and 2016-2017 data for the fresher rock are shown in Table 14-7. A total of 3 outliers were removed leaving a population of 557 densities to work with.

	Zone		2016-2017	Resource De	Comment on the	
			N of Data	N of Holes	Mean	density used for resources
	North		325	9	3.01	Conservative (5 %)
	Centre		398	10	3.00	Conservative (5 %)
Eleonore	South	2.86	177	4	2.97	Maybe conservative
	South-South		378	8	3.01	Conservative (5 %)
	West		43	1	2.76	Maybe optimistic (3 %)
	I	3.00	36	1	3.12	Maybe conservative
Sophie	II	2.85	151	5	3.01	Conservative (5 %)
	II		68	1	3.02	Maybe conservative
Lily		2.70		No data for 2016-2017		

Table 14-7: 2016-2017 Density Data Compared to Resource Densities

14.4.1 Modeling of the Saprolite Depth for Density Attribution

A saprolite surface was generated using X, Y, Z points from the lithological table. Then the blocks were tagged as saprolite and an appropriate density was applied.

For resource estimation, SGS received a geology database on October 22, 2017 with oxidation information for a total of 720 holes including 317 from 2010, 2011, and 2012 by Shield and Gryphon and of 403 by Algold (176 in 2016 and 227 a total in 2017). The file named "TIJ ALG ALL Geology Compiled 22102017.xlsx" contains the geological intervals with the weathering, primary lithology and secondary lithology information. These depths were used to update the saprolite / fresher rock interface surface model. This new surface was used for the attribution of densities in the model. These data were used to update the saprolite / fresher rock interface surface model. The new surface was used for the attribution of densities in the model. Blocks between the topography and the saprolite / fresher rock interface surface are attributed a saprolite density while material below the saprolite / fresher rock interface surface are attributed a fresh rock density. Refer to the Density paragraph for the detailed densities used in the resource model.

14.5 Interpretation of the Mineralization

Each of the 220 mineralized envelopes was considered as a hard boundary mineralization; composites for estimation were limited to inside each mineralized zone for block estimation, removing influence of values of adjacent mineralized structures.

14.6 Resource Block Modelling

The project consists of 6 block models oriented in 4 different grids having the parameters shown in Table 14-8. Block sizes vary between $2 \text{ m} \times 5 \text{ m} \times 2.5 \text{ m}$ and $5 \text{ m} \times 5 \text{ m} \times 5 \text{ m}$. Except Lily, block models are turned to conform to the general orientations of the zones. The coordinates of the origin correspond to the center of the first block. Full blocks were used that means that if the center of the block falls inside the volume, it is counted at 100 %, if the center of the block falls outside the volume, it is counted at 0 %. Each of the 220 mineralized volumes was tagged in the block model and estimated separately. Discretization of $2 \times 2 \times 2$ (8 sub-blocks) was used to better estimate the distance between composites and blocks.

Table 14-8: Block Models Parameters

Block Model	Rotation		cks Size	(m)	Block Grid	Block Grid Number				
Zone	Rotation	Х	Y	Z	Х	Y	Z	Х	Y	Z
Eleonore	30	2	5	2.5	480,200	2,248,400	-200	926	801	161
Lily	0	5	5	5	475,600	2,244,400	-250	341	341	91
Sophie I-II	15	2	5	2.5	473,800	2,250,600	-200	1,201	561	161
Sophie III	30	2	5	5	473,500	2,247,600	-200	850	700	81

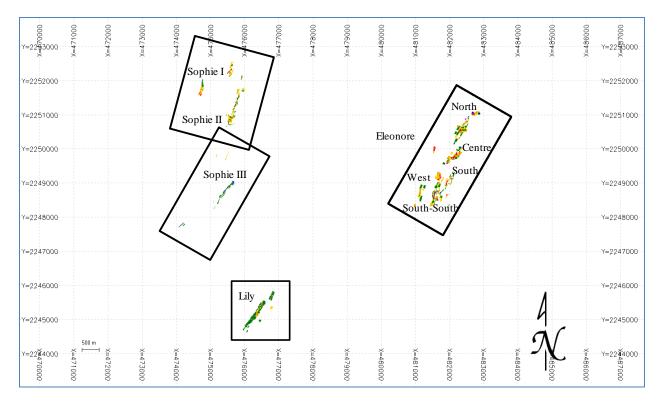


Figure 14-1: Map of the 4 Grids Used for Block Models

14.6.1 Variography

The variography has been revised on January 4, 2018. A block model has been estimated by kriging. The global results are less than 5 % different from the Inverse Square Distance model. The kriged model was not retained as the final model for this report. Like in June 2016, the short range variogram is acceptable. Actually, SGS calculated a correlogram. It is presented in Figure 14-2. For the first time, the long range variogram was quite successful thanks to some heavy manipulation of the data to maximize the number of pairs along the strike and dip of the mineralized zones. In order to prepare the long range variogram presented in Figure 14-3, the composites were unfolded using projections along the X axis. The Figure 14-4 presents the short and long range variogram. The Table 14-9 shows the summary of an integrated variogram. Note that the proper orientation was customized for each individual mineralized volume to be worked on. So, to summarize the results, one could say that the effective range perpendicular to the mineralized structures is of about 4.8 m while it is of 75 m along the structures. The author believes that there are different ranges for the different mineralized zones (Eleonore vs Lily for example) but more data will be needed to assess this assumption.

For June 2016 estimation, the smoothing of the final estimate was calibrated against the natural variance of blocks of 6 m x 6 m x 6 m. The result is that the final estimate has smoother variance then the natural 6 m x 6 m x 6 m blocks. The predicted variance of these blocks is done using the prediction of the internal variance of such a block. Having a final estimate smoother than estimated variance in reality is ideal because the final block model is therefore judged as on the conservative side when a cut-off grade is applied.

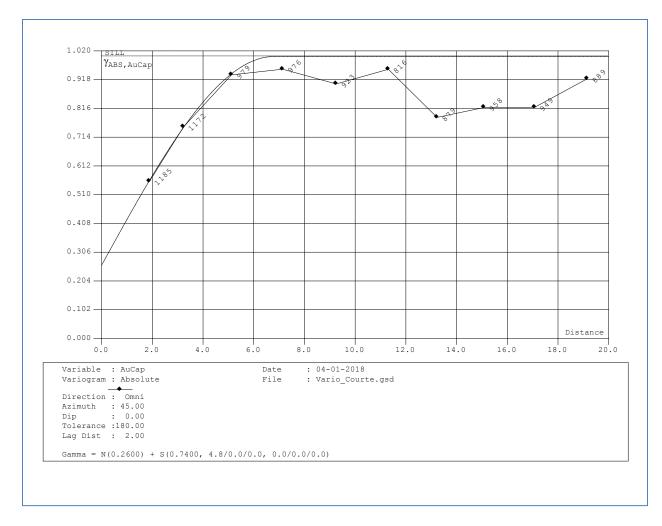


Figure 14-2: Short Range Variogram Model

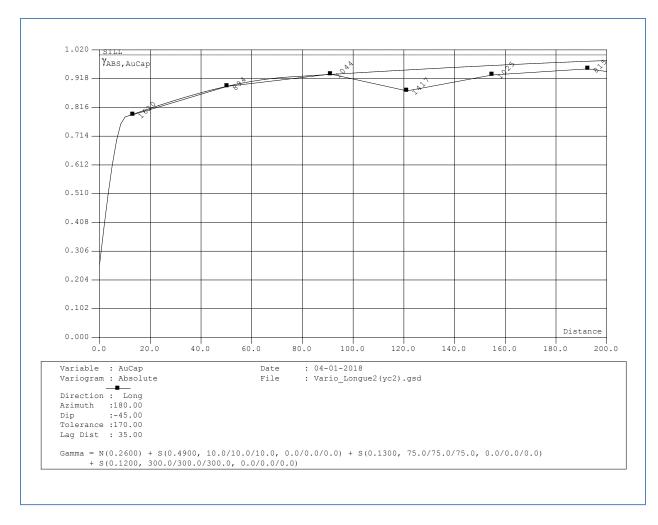


Figure 14-3: Long Range Variogram Model

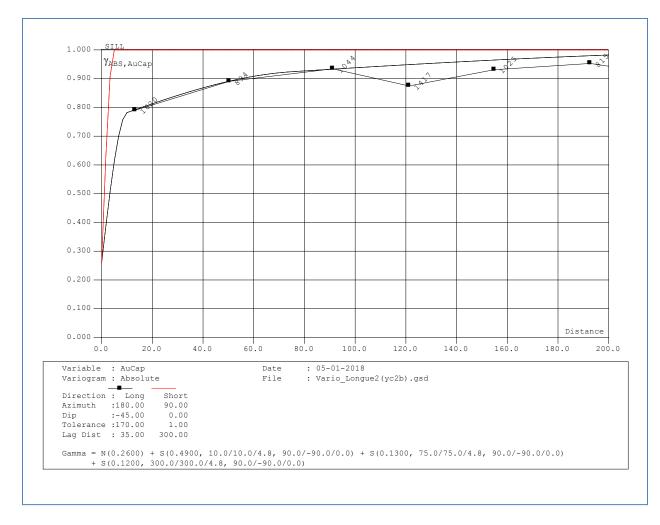


Figure 14-4: Short Range and Long Range Variogram Model

	Component		Ranges (m)			
Number	Туре	C (%)	Short	Medium	Long	
4	Spherical	12%	4.8	300	300	
3	Spherical	13%	4.8	75	75	
2	Spherical	49%	4.8	10	10	
1	Nugget	26%	NA	NA	NA	

Table 14-9: Summary of the Variogram Model

14.6.2 Grade Interpolation Methodology

For the new estimation in 2018, most of the methodology has been retained from the 2017 one. To interpolate Au grade, the Inverse Square Distance (ISD) method was used, with anisotropic distances influenced by ellipsoids in the calculation and the composite selection. Block discretization was set to $2\times2\times2$ for the estimation of block to composite distance. Blocks were created within all the mineralized envelopes, and each composite was tagged with an envelope name. A composite set was created for each envelope (220 composite sets), containing both the Au and Au_Cap values. Two estimation passes were used with a small ellipsoid for the first pass and larger ellipsoid for the second pass. The small ellipsoids have radiuses of 75 m x 75 m x 25 m, and the large ellipsoids have radiuses of 150 m x 150 m x 50 m.

A variable orientation for the ellipsoids has been used to ensure that the orientation of the composite search is always in line with the estimated mineralized volume extension.

The first pass of the estimation used a minimum of 4 and a maximum of 7 composites, with the additional limit of 2 composites per drillhole. The second pass of the estimation used a minimum of 2 and a maximum of 7 composites, with the additional limit of 2 composites per drillhole except for 35 volumes with a minimum of one. There are exceptions for 27 volumes in Eleonore, 8 volumes in Sophie I-II-III and no volume in Lily: the minimum number of composites used in the second pass was lowered to 1 for these 35 volumes.

All blocks inside the mineralized volumes (envelopes) were estimated.

14.7 Classification

14.7.1 Definitions

Definitions are from the Canadian institute of Mining, Metallurgy and Petroleum (CIM):

Mineral Resource

Mineral Resources are sub-divided, in order of increasing geological confidence, into Inferred, Indicated and Measured categories. An Inferred Mineral Resource has a lower level of confidence than that applied to an Indicated Mineral Resource. An Indicated Mineral Resource has a higher level of confidence than an Inferred Mineral Resource but has a lower level of confidence than a Measured Mineral Resource.

A Mineral Resource is a concentration or occurrence of diamonds, natural solid inorganic material, or natural solid fossilized organic material including base and precious metals, coal, and industrial minerals in or on the Earth's crust in such form and quantity and of such a grade or quality that it has reasonable prospects for economic extraction. The location, quantity, grade, geological characteristics and continuity of a Mineral Resource are known, estimated or interpreted from specific geological evidence and knowledge.

The term Mineral Resource covers mineralization and natural material of intrinsic economic interest which has been identified and estimated through exploration and sampling and within which Mineral Reserves may subsequently been defined by the consideration and application of technical, economic, legal, environmental, socio-economic and governmental factors. The phrase 'reasonable prospects for economic extraction' implies a judgment by the Qualified Person in respect of the technical and economic factors likely to influence the prospect of economic extraction. A Mineral Resource is an inventory of mineralization that under realistically assumed and justifiable technical and economic conditions might become economically extractable. These assumptions must be presented explicitly in both public and technical reports.

Inferred Mineral Resource

An 'Inferred Mineral Resource' is that part of a Mineral Resource for which quantity and grade or quality can be estimated on the basis of geological evidence and limited sampling and reasonably assumed, but not verified, geological and grade continuity. The estimate is based on limited information and sampling gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings and drill holes.

Due to the uncertainty that may be attached to Inferred Mineral Resources, it cannot be assumed that all or any part of an Inferred Mineral Resource will be upgraded to an Indicated or Measured Mineral Resource as a result of continued exploration. Confidence in the estimate is insufficient to allow the meaningful application of technical and economic parameters or to enable an evaluation of economic

viability worthy of public disclosure. Inferred Mineral Resources must be excluded from estimates forming the basis of feasibility or other economic studies.

Indicated Mineral Resource

An 'Indicated Mineral Resource' is that part of a Mineral Resource for which quantity, grade or quality, densities, shape and physical characteristics can be estimated with a level of confidence sufficient to allow the appropriate application of technical and economic parameters, to support mine planning and evaluation of the economic viability of the deposit. The estimate is based on detailed and reliable exploration and testing information gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings and drill holes that are spaced closely enough for geological and grade continuity to be reasonably assumed.

Mineralization may be classified as an Indicated Mineral Resource by the Qualified Person when the nature, quality, quantity and distribution of data are such as to allow confident interpretation of the geological framework and to reasonably assume the continuity of mineralization. The Qualified Person must recognize the importance of the Indicated Mineral Resource category to the advancement of the feasibility of the project. An Indicated Mineral Resource estimate is of sufficient quality to support a Preliminary Feasibility Study which can serve as the basis for major development decisions.

Measured Mineral Resource

A 'Measured Mineral Resource' is that part of a Mineral Resource for which quantity, grade or quality, densities, shape, and physical characteristics are so well established that they can be estimated with confidence sufficient to allow the appropriate application of technical and economic parameters, to support production planning and evaluation of the economic viability of the deposit. The estimate is based on detailed and reliable exploration, sampling and testing information gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings and drill holes that are spaced closely enough to confirm both geological and grade continuity.

Mineralization or other natural material of economic interest may be classified as a Measured Mineral Resource by the Qualified Person when the nature, quality, quantity and distribution of data are such that the tonnage and grade of the mineralization can be estimated to within close limits and that variation from the estimate would not significantly affect potential economic viability. This category requires a high level of confidence in, and understanding of, the geology and controls of the mineral deposit.

14.7.2 Classification Method

The categories Measured and Indicated have been given to blocks by drawing outlines manually on longitudinal views. Everything outside these limits have been attributed Inferred category. Also, only Sophie and Lily have been attributed Measured, Indicated and Inferred resources, Eleonore has been attributed with only Indicated and Inferred resources. The extents of the outlines are based on the distance between drill holes Mineralized Intersections (MI). The full thicknesses of the mineralized structures have the same category.

There must be at least 3 MIs in close neighbourhood to get some indicated resource. There must also be at least 2 MIs from RC or diamond drill holes in close neighbourhood to get some indicated resource. Drilling every 40 metres (Eleonore and Sophie I), 45 metres (Sophie II-III) and 50 metres (Lily) was classified as indicated.

There must be at least 4 MIs in close proximity to get some measured resource. There must also be at least 3 MIs from RC or diamond drill holes in close neighbourhood to get some measured resource. Drilling every 30 metres (all except Lily) and 35 metres (Lily) was classified as measured.

Inferred resources have been modeled using RC holes, diamond drill holes and trenches. The distance between Mineralized Intersections can be of up to 200 m where the geology map is more straightforward and when the structures appear to be straight and have grades continuously above the modeling cut-off. While the distance between Mineralized Intersections is of 200 m, the extensions are kept on the conservative side with extensions of 45 m both laterally and at depth. For the LilyG structure, extensions of up to 80 m have been used at depth, as this zone have the thickest mineralized intervals (around 25 m) and simple geometry. In Eleonore, the distance between Mineralized Intersections can be of up to 100 m. Eleonore extensions of 45 m both laterally and at depth have been used. The half distance to the next hole have been used when a drill hole cut short a mineralized volume by showing grades below the modeling grade. Eleonore has a maximum interpolation up to 100 metres. Other zones have interpolation up to 200 metres. All zones have extrapolation limited to 45 metres.

14.8 Optimized Open Pits

To limit resources to quantities with reasonable potential for profitable extraction, resources are limited by optimized pits. The new assumptions are a gold price of US \$ 1,500/oz, mining recovery of 95 %, mining dilution of 5 % (for Sophie/Lily) and 10 % (for Eleonore), processing recovery of 96 % (for Sophie/Lily) and 97 % (for Eleonore), a processing cost of \$12.02/t, a G&A cost of \$3.69/t and an open pit mining cost of \$1.41/t. For underground mining costs, the current assumption is \$40/t. Based on these assumptions; the economically viable cut-off grades are 0.4 g/t Au in open pits and 1.5 g/t Au under the pits. Accordingly, Algold decided to retain COGs of 0.4 g/t Au in open pits and 1.7 g/t Au for Sophie/Lily and a global COG of 1.5 g/t Au for Eleonore.

Whittle software was used to create pit shells based on the resource model and the topographic surface. The open pits presented here to limit the resources are shells without ramps. The gold price, mining and processing costs and slope angle used for this optimization are shown in Table 14-10. Capped Au was used for the optimizations and is reported in resource tables.

The current study considers the 5 % RIM royalty in calculating COG.

Table 14-10: Assumptions Used for the Optimization of the Open Pits and Economical COG
Calculations of Open Pit Resources

Block Model Zone Name		Id Price	Pit Angle		Proce	essing			Mining		Royalties	COG
BIOCK MODEL ZONE Name	odel Zone Name (\$/oz)		(SAP/ROC)	Co	ost (%/t)	Recovery	Co	st (%/t)	Recovery	Dilution	(%)	(g/t)
Sophie I-II-III	\$	1,500	40 / 50	\$	15.71	96%	\$	1.41	95%	5%	5%	0.4
Lily	\$	1,500	40 / 52	\$	15.71	96%	\$	1.41	95%	5%	5%	0.4
Eleonore (North, Centre, West)	\$	1,500	40 / 52	\$	15.71	97%	\$	1.41	95%	10%	5%	0.4
Eleonore (South, South-South)	\$	1,500	40 / 52	\$	15.71	97%	\$	1.41	95%	10%	5%	0.4

Note: Any COG above 0.4 g/t has the potential to be economic

Table 14-11: Assumptions Used for the Economical COG Calculation of Underground Resources

Block Model Zone Name	Gol	d Price		Proce	ssing		Under	ground Mir	ning	Royalties	COG
BIOCK WOUGH ZOHE Marine	(\$/oz)	Cost (%		Recovery	Со	st (%/t)	Recovery	Dilution	(%)	(g/t)
All zones	\$	1,500	\$	15.71	97%	\$	40.00	95%	10%	5%	1.45

Note: Any COG above 1.45 g/t has the potential to be economic

Figure 14-5 to Figure 14-8 illustrate the block model used to estimate the base case mineral resource. Note the topographic surface in green, the Saprolite limit in blue and the pit shell in dark gray.



Figure 14-5: Section S9840 through Eleonore Pits with Blocks Visible from Zones Eleonore_Nord_12, 8, 16, 24, 19, 7, 1, 4, 26, 5, and 18 from Left to Right

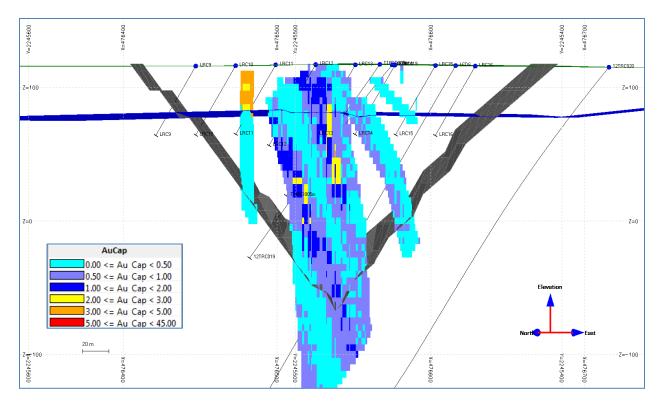


Figure 14-6: Section S2480 Through Lily Pits with Blocks Visible from Zones Lily_N, C, D and E from Left to Right

SGS Canada Inc.

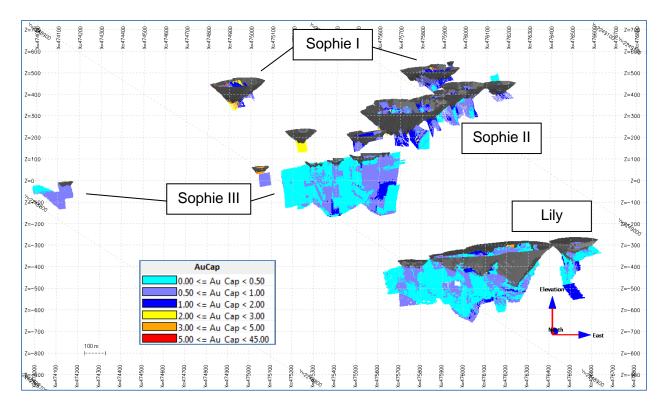


Figure 14-8: Sophie and Lily Pits with Resource Block Models

14.9 Mineral Resource Estimates (Base Case)

Resource estimation tables were created using Genesis and MS Access software to add up block data. Capped Au is reported in resource tables. The base case is presented in Table 14-12 has a COG of 0.4 g/t inside pits and 1.7 g/t below pits except for Eleonore at a global COG of 1.5 g/t.

Totals may not add up due to rounding. Mineral resources that are not mineral reserves do not have demonstrated economic viability.

The resource, especially the inferred category, could be materially affected by the mineralization interpretation. To the knowledge of the author, there are no other factors such as environmental, permitting, legal, title, taxation, socio-economical, marketing or political factors that could materially affect these estimates.

Table 14-12: Base Case Resources

Zone	Classification	Au (g/t)	Tonnage (t)	Ounces (Au)
Eleonore	Indicated	4.08	719,000	94,250
Eleonore	Inferred	4.07	3,016,000	394,690

Zone	Classification	Au (g/t)	Tonnage (t)	Ounces (Au)
Sophie/Lily	Measured	0.98	376,000	11,900
Sophie/Lily	Indicated	0.93	2,122,000	63,300
Total Sophie/Lily	Measured + Indicated	0.94	2,498,000	75,200
Sophie/Lily	Inferred	1.06	7,476,000	254,100

Zone	Classification	Au (g/t)	Tonnage (t)	Ounces (Au)
Total Sophie/Lily/Eleonore	Measured	0.98	376,000	11,900
Total Sophie/Lily/Eleonore	Indicated	1.72	2,841,000	157,550
Total Sophie/Lily/Eleonore	Measured + Indicated	1.64	3,217,000	169,450
Total Sophie/Lily/Eleonore	Inferred	1.92	10,492,000	648,790

1. Effective date for Eleonore and Sophie/Lily resources is January 19, 2018.

- 2. The independent QP for this resources estimate is Yann Camus, Eng., SGS Canada Inc.
- 3. The mineral resources are presented at a 0.4 g/t Au cut-off grade in pits and 1.7 g/t Au cut-off grade under the pits, except Eleonore at a global cut-off 1.5 g/t Au.
- 4. The resources are presented without dilution.
- 5. Whittle pits have been utilized based on a gold value of US\$1,500/oz.
- 6. Mineral resources that are not mineral reserves do not have demonstrated economic viability. This disclosure does not include economic analysis of the mineral resources.
- 7. Totals may not add up due to rounding.
- 8. No economic evaluation of the resources has been produced.
- 9. This Resource estimate has been prepared in accordance with CIM definition (2014).
- 10. Density used is between 2.0 and 3.0 depending on rock type and alteration based on measurements.
- 11. Capping varies from 3.5 g/t Au (Lily) to 45 g/t Au (Eleonore) depending on extreme local grade.

14.10 Mineral Resource Estimates (Various Alternate Cases)

The following resource tables are provided to test the sensitivity of the resource to a change in the COG that can be caused by a change in the gold price for example. The COG for a particular project can also change if any of the cost and mining assumptions change. All the notes provided for the base case except note 3 also apply to the alternative cases unless noted.

The Table 14-13 for the Eleonore zone and Table 14-14 shows the detailed mineral resources for the Sophie and Lily zones at COGs of 1.5 g/t and 2.0 g/t Au without use of pit constrains. COGs above 1.45 g/t Au have reasonable prospect for economic extraction for current underground mining assumptions.

Zone	COG (g/t Au)	Classification	Au (g/t)	Tonnage (t)	Ounces (Au)
Eleonore	1.5	Indicated	4.08	719,000	94,250
Eleonore	1.5	Inferred	4.07	3,016,000	394,690
Eleonore	2.0	Indicated	4.88	535,000	84,010
Eleonore	2.0	Inferred	5.12	2,089,000	343,490

Table 14-13: Eleonore R	Resources at COGs (of 1.5 g/t and 2.0 g/t A	Au
	1000u 000 u 0000	or no greana 210 grer	

Table 14-14: Sophie/Lily Resources at COGs of 1.5 g/t and 2.0 g/t Au

Zone	COG (g/t Au)	Classification	Au (g/t)	Tonnage (t)	Ounces (Au)
Sophie/Lily	1.5	Measured	2.55	51,000	4,200
Sophie/Lily	1.5	Indicated	2.18	260,000	18,210
Sophie/Lily	1.5	Measured + Indicated	2.24	311,000	22,410
Sophie/Lily	1.5	Inferred	2.26	1,551,000	112,820
Sophie/Lily	2.0	Measured	3.03	33,000	3,180
Sophie/Lily	2.0	Indicated	2.67	125,000	10,720
Sophie/Lily	2.0	Measured + Indicated	2.74	158,000	13,890
Sophie/Lily	2.0	Inferred	2.97	682,000	65,100

14.11 Mineral Resource Estimates (For Eleonore – Alternate Cases with Open Pits)

The Eleonore pits have been used to prepare the following tables. These resource tables show the sensitivity of the resource to a change in the COG. They also show the proportion of resources contained in the optimized open pits vs under the pits. The scenarios with different COGs in pits and under pits are presented in Table 14-16 to Table 14-18. The scenarios with equal COGs in pits and under pits are presented in Table 14-19 to Table 14-21. This exercise shows that most of the ounces are located inside optimized pits. We can estimate that between 84 % and 94 % of the ounces could possibly be accessed by open pit mining.

Table 14-15: Eleonore Zone Sensitivity Analysis - Various Cut-off Grades (within 0.4 g/t Au Whittle
pit constraint)

COG (In Pit) Au (g/t)	COG (Under Pit) Au (g/t)	Class Name	Au (g/t)	Tonnage (t)	Ounces (Au)	Comments
0.4	1.7	Indicated	2.48	1,414,000	112,900	
0.4	1.7	Inferred	2.66	5,349,000	457,500	
0.6	1.7	Indicated	2.77	1,237,000	110,090	COG different in pit
0.6	1.7	Inferred	2.92	4,768,000	448,130	and under pit
1.0	1.7	Indicated	3.45	921,000	102,200	
1.0	1.7	Inferred	3.49	3,773,000	422,900	

COG	In Pits/	Zone	Classification	Au	Tonnage	Ounces	% Ounces in Pits
(g/t Au)	Under Pits	Zone	olassinoation	(g/t)	(t)	(Au)	vs Under Pits
0.4	In Pits	Eleonore	Indicated	2.49	1,382,000	110,550	92 %
0.4	In Pits	Eleonore	Inferred	2.67	4,813,000	413,080	92 %
1.7	Under Pits	Eleonore	Indicated	2.31	31,000	2,310	0.0/
1.7	Under Pits	Eleonore	Inferred	2.58	536,000	44,430	8 %

Table 14-16: Mineral Resources for Eleonore In Pit vs Under Pit at COGs of 0.4 g/t and 1.7 g/t Au

Table 14-17: Mineral Resources for Eleonore In Pit vs Under Pit at COGs of 0.6 g/t and 1.7 g/t Au

COG	In Pits/	Zone	Classification	Au	Tonnage	Ounces	% Ounces in Pits
(g/t Au)	Under Pits				(t)	(Au)	vs Under Pits
0.6	In Pits	Eleonore	Indicated	2.78	1,206,000	107,780	92 %
0.6	In Pits	Eleonore	Inferred	2.97	4,232,000	403,700	92 %
1.7	Under Pits	Eleonore	Indicated	2.31	31,000	2,310	0.0/
1.7	Under Pits	Eleonore	Inferred	2.58	536,000	44,430	8 %

Table 14-18: Mineral Resources for Eleonore In Pit vs Under Pit at COGs of 1.0 g/t and 1.7 g/t Au

COG (g/t Au)	In Pits/ Under Pits	Zone	Classification	Au (g/t)	Tonnage (t)	Ounces (Au)	% Ounces in Pits vs Under Pits
1.0	In Pits	Eleonore	Indicated	3.49	890,000	99,910	
1.0	In Pits	Eleonore	Inferred	3.64	3,237,000	378,430	91 %
1.7	Under Pits	Eleonore	Indicated	2.31	31,000	2,310	0.0/
1.7	Under Pits	Eleonore	Inferred	2.58	536,000	44,430	9 %

COG	In Pits/	Zone	Classification	Au	Tonnage	Ounces	% Ounces in Pits
(g/t Au)	Under Pits			(g/t)	(t)	(Au)	vs Under Pits
1.5	In Pits	Eleonore	Indicated	4.18	682,000	91,640	89 %
1.5	In Pits	Eleonore	Inferred	4.59	2,317,000	341,950	09 %
1.5	Under Pits	Eleonore	Indicated	2.20	37,000	2,620	11.0/
1.5	Under Pits	Eleonore	Inferred	2.35	699,000	52,730	11 %

Table 14-19: Mineral Resources for Eleonore In Pit vs Under Pit at a COG of 1.5 g/t Au

Table 14-20: Mineral Resources for Eleonore In Pit vs Under Pit at a COG of 2.0 g/t Au

COG	In Pits/	Zone	Classification	Au	Tonnage	Ounces	% Ounces in Pits
(g/t Au)	Under Pits			(g/t)	(t)	(Au)	vs Under Pits
2.0	In Pits	Eleonore	Indicated	4.97	516,000	82,360	01.0/
2.0	In Pits	Eleonore	Inferred	5.66	1,688,000	306,960	91 %
2.0	Under Pits	Eleonore	Indicated	2.58	20,000	1,650	0.0/
2.0	Under Pits	Eleonore	Inferred	2.84	401,000	36,530	9 %

Table 14-21: Mineral Resources for Eleonore In Pit vs Under Pit at a COG of 2.5 g/t Au

COG	In Pits/	Zone	Classification	Au	Tonnage	Ounces	% Ounces in Pits
(g/t Au)	Under Pits			(g/t)	(t)	(Au)	vs Under Pits
2.5	In Pits	Eleonore	Indicated	5.64	414,000	75,060	94 %
2.5	In Pits	Eleonore	Inferred	6.60	1,323,000	280,700	94 %
2.5	Under Pits	Eleonore	Indicated	3.02	10,000	920	C 0/
2.5	Under Pits	Eleonore	Inferred	3.44	195,000	21,550	6 %

Note: Sections 15 to 19 only apply to Advanced Property Technical Reports such as Preliminary Economic Assessments (PEA), Pre-Feasibility Studies (PFS) and Feasibility Studies (FS). They were left in to show the typical framework of the Advanced Property Technical Reports.

15. Mineral Reserve Estimates

There is no Mineral Reserve on this project.

16. Mining Methods

17. Recovery Methods

18. Project Infrastructure

19. Market Studies and Contracts

20. Environmental Studies, Permitting and Social or Community Impact

20.1 Environmental and Social Impact Assessment Study

In 2016, Algold gave the mandate to AECOM to prepare an Environmental and Social Impact Assessment Study (ESIA) on Tijirit Project

This study covers:

- The legal and institutional framework;
- A detailed description of the Tijirit Project;
- A portrait of the initial state of the receiving environment;
- A communication plan with a public consultation program developed for the Project with the results obtained;
- An assessment of the environmental and social impacts with appropriate mitigation measures;
- An assessment of cumulative impacts;
- An environmental and social management plan;
- The broad lines of the Resettlement Action Plan
- The broad lines of the Environmental Emergency Response Plan
- The broad lines of the site rehabilitation and closure plan.

As part of the consultation process, AECOM conducted additional investigations with stakeholders to collect information and to have further discussions. Meetings were held with Algold employees and with representatives of the wilayas of l'Inchiri and Dakhlet-Nouadhibou; from Chami moughataa as well as Chami and Tmeïmichat Townships.

The study was given to the Mauritanian Government at the end of 2016 and at the beginning of 2017, the Mauritanian Ministry of Environmental and Sustainable Development has provided a conclusive acceptance and opinion regarding the ESIA Study Report.

20.2 Artisanal Mining

Some illegal artisanal mining is conducted in the Tijirit area since 2016. The environmental impacts of their works will be further evaluated in 2018.

20.3 Tailings Disposal

Some preliminary testwork have been conducted by SGS Lakefield in Canada in 2016 to asses the acid generation potential of the process plant residues. Results are presented in Item 13. Further tests are planned in 2018.

20.4 Permitting

In June 2017, a thirty-year mining permit (2480C2) have been granted to Tirex by the Government of Mauritania giving them the exclusive right of prospecting, seeking and exploiting gold within the limit of this permit.

According to Mauritanian Legislation, no other permits are required to proceed with the development of the project.

Note: Sections 21 to 22 only apply to Advanced Property technical Reports such as Preliminary Economic Assessments (PEA), Pre-Feasibility Studies (PFS) and Feasibility Studies (FS). They were left in to show the typical framework of the Advanced Property Technical Reports.

21. Capital and Operating Costs

22. Economic Analysis

23. Adjacent Properties

According to RIM mining license database for 2017, three exploration permits are adjacent to the Tijirit project, Table 23-1. Two of the permits belongs to Mauritanian local owner and one to Kinross through Tasiast Mauritania. The properties are located in the granitic-volcanic complexes of the southwestern Reguibat Archean Ridge and are partly covered by a thick sand cover of Azéfal dune bar to the northwest and of Akchâr to the southeast of Tijirit.

437B2 - Kinross conducted exploration works on the northern part of 437B2 permit only (Sims, 2014), but the southern portion adjacent to the Tijirit permit is almost entirely covered with sand prohibiting any exploration works.

2194B2 - the Gulf Mining permit shows a NNE-trending continuity with the Archean meta volcanic, sedimentary and igneous assemblages of the eastern Tijirit. The sands of Azéfal and Akchâr cover the northern and southern parts of the permit, Figure 23-1.

2503B2 - the Quark 74 permit shows no geological continuity with Tijirit's 1117B2 permit to the north. It is almost half covered by of the sand of the Akchâr.

At the time of this report, apart from Kinross (Tasiast Mauritania), no information on the various exploration work carried out by the different owners was available.

Permit Nbr	Permit Owner	Area km ²	Sand Cover %	
437B2	Tasiast Mauritania	1478	30	
2194B2	Gulf Mining	460	29	
2503B2	Quark 74	498	45	

Table 23-1: Adjacent Properties and Permit Owners

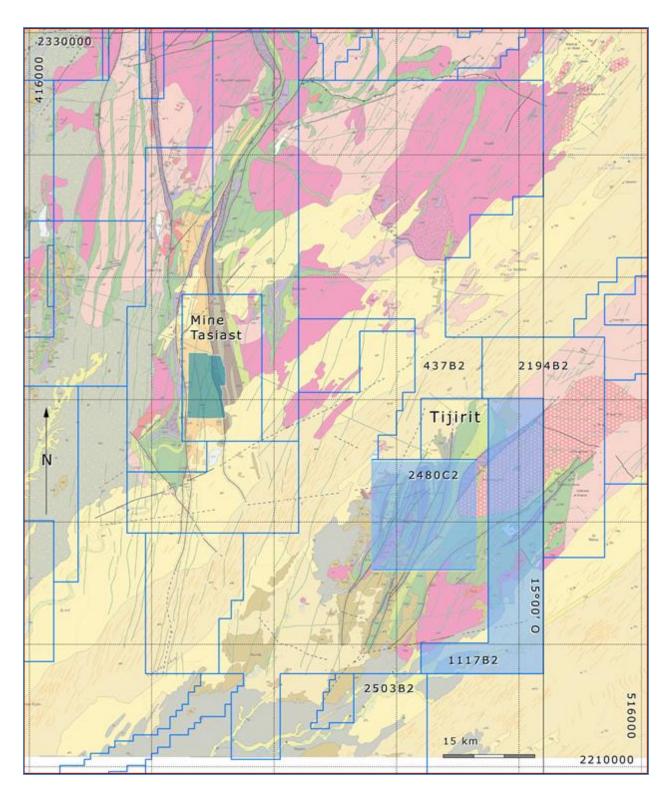


Figure 23-1: Tijirit (2480C2) and Tijirit-East (1117B2) permits and Adjacent Permits on the 1:200,000 Geological Map. RIM Mining & Exploration Licenses as of 2017

24. Other Relevant Data and Information

The author is not aware of any other data or information necessary to make this technical report understandable and not misleading.

25. Interpretation and Conclusions

The Tijirit project is comprised of the Tijirit mining concession 2480C2, covering 306 km², and of the adjacent exploration permit 1117B2, covering 460 km². The project is located in western Mauritania, in the southwestern Precambrian Reguibat shield and shows mostly Archean granite greenstone terrains. The project shows sheared and folded NNE-trending Archean metasedimentary and intermediate to ultramafic volcanic rocks in contact with porphyry, syn-tectonic granitoids and basement quartzo-feldspathic gneiss. The project was acquired by Shield Mining in 2007 after the discovery of gold mineralization and transferred to Gryphon Minerals in 2010 and acquired by Algold in March 2016.

A fair amount of exploration works was carried out by past owners including a large soil survey, an airborne magnetic and radiometric survey, trenches, rock samples, auger drilling and 37,703 m of RC and 3,814 m of core drilling. Large gold soil anomalies were revealed in five prospect areas and a limited IP survey was done on the Sophie prospect.

Since the acquisition of the project, Algold has completed over 50,000 metres of core drilling and reverse circulation drilling in the Tijirit project. Algold has also prepared an environmental and social impact study that was submitted to the Mauritanian government in 2016. SGS Lakefield was commissioned to implement two metallurgical test programs in 2016 and 2017. In February 2017, the Minister Environment and Sustainable Development of Mauritania has agreed to the environmental feasibility of the Tijirit gold mining project.

To date, Algold has been able to substantially increase resources on the project, especially on Eleonore and to identify promising new areas (Salma, Eleonore East, Nour, Southeast). Efforts over the next few months will be required to better define these new areas and to increase drilling density on already known areas in order to transform the majority of existing inferred resources into indicated or measured resources.

The work done to date has demonstrated the potential of the Tijirit project and several recommendations are made to continue the development of this project.

After compiling the information and making several verifications, it is the author's opinion that the exploration work, drilling and trenching was done according to the industry standards and that the information is reliable.

There are no uncertainties or risks related to the information inspected by the author other than standard risks in the mining industry like price drops and such.

The Tijirit project shows a high potential for further mineralization discoveries on the main prospects, on their extensions and possibly along sheared meta-igneous contacts to the east. It is the author's opinion that the project has the potential of carrying large gold mineralized systems.

26. Recommendations

SGS recommends proceeding with the following development plan for the Tijirit Project. The plan presented here is aligned with Algold's strategy of development for the Project.

- Proceed with a Preliminary Economic Assessment (PEA) of the project based on the current resource estimations;
- Do some infill drilling to cover current resources. The aim is to increase the quantity of indicated resources (and possibly measured)
 - Focus on inpit resources first as they are closer to surface, probably easier to extract, and they require shorter drillholes so much less costly drilling
- Proceed with more different extractive tests (heap leach amenability test, gravimetric and cyanidation tests, comminution tests and environmental testwork) on the different mineral types (BIF and Non BIF) and also on different grades representative of the resource contained in Whittle Pits (medium-low grade and medium-high grade);
- Exploration of new recent discoveries that are not at the resource development stage including mapping, structural study, additional soil survey, trenching, additional geophysics, hydrological and geotechnical studies, and preliminary drilling;
- Proceed with process and mine engineering to complete a Preliminary Economic Assessment (PEA) of the project.

It is assumed that between 20 000 to 50 000 metres will be required for the next drilling phase. The expected cost to complete the above-mentioned exploration, drilling and sites costs, metallurgical tests, and Preliminary Economic Assessment (PEA) is between 4.65 M\$ and 7.95 M\$; a high-level budget recommendation is outlined in Table 26-1.

Table 26-1: Recommended Budget

Description	US\$
Drilling Costs (additional infill program):	2,200,000
Total of between 20,000 and 50,000 m of RC and DDH drilling with assays and logging (75 % RC, 25 % DDH). This drilling should be enough to cover current resources with infill drilling. This will help for future technical/economical studies.	to 5,500,000
Site Costs:	1,000,000
Including camp costs, salaries and transportation costs	, ,
Metallurgical Tests:	
Heap Leach amenability test	
Gravimetric and cyanidation tests	250,000
Comminution tests	
Environmental Testwork	
Preliminary Economic Assessment (PEA)	
Process engineering	200,000
Mine engineering	
Other Suggested Budgets:	
Mapping, structural study, additional soil survey, trenching, additional geophysics, hydrological and geotechnical study	1,000,000
	4,650,000
TOTAL (varies depending on the infill drilling required to delineate enough resources to an indicated or measured resources)	to
	7,950,000

27. References

AECOM, 2016 : Environmental and Social Impact Assessment Study (ESIA) on Tijirit Project, unpublished report to Algold.

BRGM, 1968 : Carte Géologique de Mauritanie au 1 : 1 000 000.

BGS, 2004a : Notice Explicative des Cartes Géologiques et Métallogéniques à 1/200 000 et 1/500 000 au Sud de la Mauritanie; Volume I - Géologie; Rapport final du PRISM, British Geological Survey, 580 p.

BGS, 2004b : Notice Explicative des Cartes Géologiques et Métallogéniques à 1/200 000 et 1/500 000 au Sud de la Mauritanie; Volume II - Potentiel Minier; Rapport final du PRISM, British Geological Survey, 213 p.

Bolster, S., 2011: Field Visit and Data Review and Interpretation, Tijirit, Mauritania; unpublished report to Gryphon Minerals, 26 p.

Ciesielski, A., 2015: Algold Resources Ltd. – Tijirit Property – Mauritania – 430101 Technical Evaluation Report; Report submitted to Algold on October 26, 2015. 54 p. Internal Report produced for Algold.

Ciesielski, A., 2017: Dispersion of Gold in the Eleonore laterites – Implications for Exploration; Internal Report produced by Algold, 9 p.

Ciesielski, A. and Gauthier M., 2017: Geology of the Salma-Tijirit East mineralized zone, Tijirit property; Internal Report produced by Algold, 3 p.

Choubert, G. and Faure-Muret, A., 1971: Dorsale Reguibate (Sahara Occidental); in Tectonique de l'Afrique, UNESCO, p. 177-184.

Davies, B., 2012: Tijirit Project - a brief review of the district geological framework; Renaissane Geology unpublished report for Gryphon Minerals, 17 p.

El Hadji, H.O.F., 2002: Les minéralisations aurifères dans les formations ferrifères d'Aouéouat, Tasiast, Mauritanie; mémoire de MSc., Université du Québec à Montréal, 229 p.

Fabre, J., 2005: Géologie du Sahara occidental et central; Musée Royal de l'Afrique Centrale – Belgique; Tervuren Geoscience Collection vol. 108, 572 p.

Kerswill, J.A., 1993: Models for iron-formation hosted gold deposits; in Kirkham, R.V., Sinclair, W.D., Thorpe, R.I. and Duke, J.M. (eds). 1993. Mineral Deposit mMdeling; Geological Association of Canada Special Paper 40.

Key, R.M., Loughlin, S.C., Gillespie, M., Del Rio, M. Horstwood, M.S.A., Crowley, Q.G., Darbyshire, D.P.F., Pitfield, P.E.J., & Henne, P.J., 2008: Two Mesoarchaean Terranes in the Reguibat Shield of NW Mauritania.: Geological Society, London, Special Publications 2008, v. 297, p. 33-52.

Leroux, D.C., Roy, W.D. and Orava, D., 2007: Technical report on the Tasiast Gold Project, Islamic Republic of Mauritania; unpublished 43-101 report for Red Back Mining Inc., 97 p.

Maurin, G., Bronner, G., Le Goff, E., and Chardon, D., 1996: Châmi – Notice explicative de la carte géologique à 1 : 200,000; République Islamique de Mauritanie, Projet FED no. 7 ACP MAU 009 (MAU 7002), Prospection aurifère dans le Tasiast – Tijirit, N2459.

Potrel, A., 1994: Évolution tectono-métamorphique d'un segment de croûte continentale archéenne. Exemple de l'Amsaga (R.I. de Mauritanie), Dorsale de Réguibat; Thèse de Doctorat de l'Université de Rennes I, Mémoires de Géoscience – Rennes no. 56, 359 p. et annexes.

SGS, 2016 : Tijirit Property NI 43-101 Technical Report with Resource Estimate, Tijirit, Mauritania. Report submitted to Algold on August 4, 2016. 112 p.

SGS, 2017 : Tijirit Property NI 43-101 Technical Report with Resource Estimate Update, Tijirit, Mauritania. Report submitted to Algold on June 15, 2017. 138 p.

SGS, 2017 : An Investigation into the Recovery of Gold from Tijirit Project Samples, unpublished report for Algold, 189 p.

Sims, J., 2014: Tasiast project, Mauritania, National Instrument 43-101 Technical Report; unpublished report for Kinross Gold Corp., 245 p.

Southern Geoscience Consultants, 2008: 2008 Tijirit resistivity / induced polarization interpretation; unpublished report for Shield Mining.

UNESCO 1988: Carte géologique internationale de l'Afrique, Feuille 1; Commission de la Carte Géologique du Monde / UNESCO 1988

28. Annex I – List of Diamond Drillholes on the Project

Hole Name	Azimuth	Dip	Length	Hole Type	Owner	Year Drilled
ECD1	300	-50	71.15	DDH	Gryphon	2011
ECD2	300	-50	149.6	DDH	Gryphon	2011
ECD3	300	-50	300.1	DDH	Gryphon	2011
ECD4	300	-50	315.2	DDH	Gryphon	2011
LCD1	300	-50	119.3	DDH	Gryphon	2011
LCD2	300	-50	220	DDH	Gryphon	2011
LCD3	300	-50	150	DDH	Gryphon	2011
LCD4	300	-60	140.2	DDH	Gryphon	2011
LCD5	300	-60	269.4	DDH	Gryphon	2011
LCD6	300	-60	281.2	DDH	Gryphon	2011
LCD7	300	-60	352.6	DDH	Gryphon	2011
LRD18*	300	-60	125.8	RC/DDH	Algold	2017
LRD5*	300	-60	222.7	RC/DDH	Algold	2017
NCD1	290	-50	143.3	DDH	Gryphon	2011
NCD2	290	-50	105.5	DDH	Gryphon	2011
NCD3	300	-50	118.6	DDH	Gryphon	2011
SCD1	120	-50	169.8	DDH	Gryphon	2011
SCD2	300	-50	38.65	DDH	Gryphon	2011
SCD3	300	-50	130.1	DDH	Gryphon	2011
SCD4	300	-50	115.2	DDH	Gryphon	2011
SCD5	300	-50	194.1	DDH	Gryphon	2011
SCD6	300	-60	100.2	DDH	Gryphon	2011
SCD7	70	-50	100.1	DDH	Gryphon	2011
SCD8	300	-50	99.1	DDH	Gryphon	2011
SCD9	300	-50	130.1	DDH	Gryphon	2011
SRD19*	300	-50	160.2	RC/DDH	Algold	2017
SRD63*	300	-60	100.8	RC/DDH	Algold	2016
SRD70*	300	-60	136.6	RC/DDH	Algold	2017
T16DD001m	257	-53	86.85	DDH	Algold	2016
T16DD002m	265	-60	80.8	DDH	Algold	2016
T16DD003m	255	-50	69.85	DDH	Algold	2016
T16DD004m	300	-50	65.4	DDH	Algold	2016
T16DD005m	300	-56	120.9	DDH	Algold	2016
T16DD006m	300	-50	66.9	DDH	Algold	2016

Table 28-1: List of DDH Holes on the Project

Hole Name	Azimuth	Dip	Length	Hole Type	Owner	Year Drilled
T16DD007m	300	-60	65.8	DDH	Algold	2016
T16DD008m	300	-50	131.7	DDH	Algold	2016
T16DD009	330	-50	125.7	DDH	Algold	2016
T16DD010	300	-50	144.7	DDH	Algold	2016
T16DD011	300	-50	79.2	DDH	Algold	2016
T16DD012	300	-50	118.5	DDH	Algold	2016
T16DD013	300	-50	70.2	DDH	Algold	2016
T16DD014	300	-50	119.7	DDH	Algold	2016
T16RD026*	301.9	-47.7	224.2	RC/DDH	Algold	2016
T16RD030*	299	-50	261.6	RC/DDH	Algold	2017
T16RD033*	299.5	-50	190.4	RC/DDH	Algold	2016
T16RD034*	300	-50	250.5	RC/DDH	Algold	2016
T16RD041*	300	-50	206.5	RC/DDH	Algold	2017
T16RD044*	300	-50	180	RC/DDH	Algold	2016
T16RD080*	300	-50	231	RC/DDH	Algold	2016
T16RD081*	300	-50	235.7	RC/DDH	Algold	2016
T16RD101*	300	-50	227.8	RC/DDH	Algold	2017
T16RD102*	300	-50	210.4	RC/DDH	Algold	2017
T16RD140*	280.1	-50	259.4	RC/DDH	Algold	2017
T17DD001	280	-50	166.9	DDH	Algold	2017
T17DD002	300	-50	155	DDH	Algold	2017
T17DD003	300	-50	80.27	DDH	Algold	2017
T17DD004	300	-50	195	DDH	Algold	2017
T17DD005	340	-50	135.1	DDH	Algold	2017
T17DD006	300	-50	80.76	DDH	Algold	2017
T17DD007	300	-50	135.2	DDH	Algold	2017
T17DD008	300	-50	201	DDH	Algold	2017
T17DD009	280	-50	119.6	DDH	Algold	2017
T17DD010	300	-50	129.6	DDH	Algold	2017
T17DD011	300	-50	110.5	DDH	Algold	2017
T17DD012	300	-50	246.7	DDH	Algold	2017
T17DD013	300	-50	120.1	DDH	Algold	2017
T17DD014	300	-55	75.65	DDH	Algold	2017
T17DD015	300	-50	150.9	DDH	Algold	2017
T17DD016	300	-50	125.5	DDH	Algold	2017
T17DD017	120	-50	151.4	DDH	Algold	2017
T17DD018	300	-50	260.3	DDH	Algold	2017

Hole Name	Azimuth	Dip	Length	Hole Type	Owner	Year Drilled
T17RD002*	300	-50	250.2	RC/DDH	Algold	2017
T17RD011*	300	-50	161.8	RC/DDH	Algold	2017
T17RD024*	280	-50	250.9	RC/DDH	Algold	2017
T17RD029*	280	-50	249.9	RC/DDH	Algold	2017
T17RD037*	300	-50	130	RC/DDH	Algold	2017
T17RD044*	280	-50	241.5	RC/DDH	Algold	2017
T17RD051**	280	-50	119.6	RC/DDH	Algold	2017
T17RD064*	280	-50	123.7	RC/DDH	Algold	2017
T17RD065*	290	-50	123.2	RC/DDH	Algold	2017
T17RD066*	300	-50	183.6	RC/DDH	Algold	2017
T17RD067*	300	-50	149.7	RC/DDH	Algold	2017
T17RD068*	300	-50	119.5	RC/DDH	Algold	2017
T17RD076*	280	-50	282.1	RC/DDH	Algold	2017
T17RD081*	300	-50	186.7	RC/DDH	Algold	2017
T17RD085B*	300	-50	234.5	RC/DDH	Algold	2017
T17RD121*	280	-50	279.9	RC/DDH	Algold	2017
T17RD127*	300	-50	170.6	RC/DDH	Algold	2017
T17RD132*	290	-50	159.3	RC/DDH	Algold	2017
T17RD139*	280	-50	185.8	RC/DDH	Algold	2017
T17RD165*	300	-50	189.8	RC/DDH	Algold	2017
T17RD167*	300	-60	140.2	RC/DDH	Algold	2017

* These DDH have been extended from RC holes. The DD hole SRD63 is the extension of the RC hole SRC63, which is found in the next table. For the other holes beginning by T16RD and T17RD, they are also an extension of their RC hole (TR16RC and TR17RC), but are not included in the next table.

** This diamond drill hole is not accounted for the resource estimate because it does not contain detailed assays that allow for it use.

29. Annex II – List of Reverse Circulation Holes on the Project

Hole Name	Azimuth	Dip	Length	Hole Type	Owner	Year Drilled
ERC1	130	-60	64	RC	Shield Mining	2009
ERC2	120	-60	78	RC	Shield Mining	2009
ERC3	120	-60	64	RC	Shield Mining	2009
ERC4	300	-60	26	RC	Shield Mining	2009
ERC5	310	-60	42	RC	Shield Mining	2009
ERC6	130	-60	32	RC	Shield Mining	2009
ERC7	130	-60	40	RC	Shield Mining	2009
ERC8	310	-60	38	RC	Shield Mining	2009
ERC9	130	-60	40	RC	Shield Mining	2009
LRC1	300	-60	61	RC	Shield Mining	2009
LRC2	300	-60	61	RC	Shield Mining	2009
LRC3	300	-60	61	RC	Shield Mining	2009
LRC4	300	-60	61	RC	Shield Mining	2009
LRC5	300	-60	61	RC	Shield Mining	2009
SRC1	120	-60	60	RC	Shield Mining	2009
SRC10	120	-50	60	RC	Shield Mining	2009
SRC11	300	-50	50	RC	Shield Mining	2009
SRC12	300	-50	60	RC	Shield Mining	2009
SRC13	300	-50	70	RC	Shield Mining	2009
SRC14	300	-50	60	RC	Shield Mining	2009
SRC15	300	-50	60	RC	Shield Mining	2009
SRC16	300	-50	60	RC	Shield Mining	2009
SRC17	300	-50	60	RC	Shield Mining	2009
SRC18	300	-50	60	RC	Shield Mining	2009
SRC19	300	-50	60	RC	Shield Mining	2009
SRC2	120	-60	70	RC	Shield Mining	2009
SRC20	300	-50	70	RC	Shield Mining	2009
SRC21	280	-50	120	RC	Shield Mining	2009
SRC22	310	-50	100	RC	Shield Mining	2009
SRC23	55	-50	60	RC	Shield Mining	2009
SRC24	70	-50	70	RC	Shield Mining	2009
SRC25	55	-50	120	RC	Shield Mining	2009
SRC26	120	-50	60	RC	Shield Mining	2009
SRC27	120	-50	60	RC	Shield Mining	2009

Table 29-1: List of RC holes

Hole Name	Azimuth	Dip	Length	Hole Type	Owner	Year Drilled
SRC28	120	-50	60	RC	Shield Mining	2009
SRC29	120	-50	60	RC	Shield Mining	2009
SRC3	120	-60	68	RC	Shield Mining	2009
SRC30	120	-50	66	RC	Shield Mining	2009
SRC31	120	-50	60	RC	Shield Mining	2009
SRC32	120	-50	60	RC	Shield Mining	2009
SRC33	120	-50	60	RC	Shield Mining	2009
SRC34	120	-50	60	RC	Shield Mining	2009
SRC35	120	-50	60	RC	Shield Mining	2009
SRC36	120	-50	60	RC	Shield Mining	2009
SRC37	120	-50	60	RC	Shield Mining	2009
SRC38	120	-50	60	RC	Shield Mining	2009
SRC39	300	-50	80	RC	Shield Mining	2009
SRC4	120	-60	66	RC	Shield Mining	2009
SRC40	120	-50	60	RC	Shield Mining	2009
SRC41	120	-50	92	RC	Shield Mining	2009
SRC42	120	-50	60	RC	Shield Mining	2009
SRC43	300	-50	60	RC	Shield Mining	2009
SRC44	300	-60	154	RC	Shield Mining	2009
SRC45	300	-60	18	RC	Shield Mining	2009
SRC46	300	-60	60	RC	Shield Mining	2009
SRC47	300	-60	60	RC	Shield Mining	2009
SRC48	300	-60	60	RC	Shield Mining	2009
SRC49	300	-60	60	RC	Shield Mining	2009
SRC5	120	-60	70	RC	Shield Mining	2009
SRC50	300	-60	209	RC	Shield Mining	2009
SRC51	300	-60	151	RC	Shield Mining	2009
SRC52	120	-60	111	RC	Shield Mining	2009
SRC53	300	-60	101	RC	Shield Mining	2009
SRC54	360	-60	101	RC	Shield Mining	2009
SRC55	95	-60	101	RC	Shield Mining	2009
SRC56	125	-60	71	RC	Shield Mining	2009
SRC57	360	-60	71	RC	Shield Mining	2009
SRC58	300	-60	61	RC	Shield Mining	2009
SRC59	300	-60	87	RC	Shield Mining	2009
SRC6	120	-60	60	RC	Shield Mining	2009
SRC60	120	-50	65	RC	Shield Mining	2009

Hole Name	Azimuth	Dip	Length	Hole Type	Owner	Year Drilled
SRC61	300	-60	61	RC	Shield Mining	2009
SRC62	300	-60	65	RC	Shield Mining	2009
SRC63*	300.1	-59	90	RC	Shield Mining	2009
SRC64	300	-60	61	RC	Shield Mining	2009
SRC65	300	-60	61	RC	Shield Mining	2009
SRC66	300	-60	61	RC	Shield Mining	2009
SRC67	300	-60	81	RC	Shield Mining	2009
SRC7	120	-60	60	RC	Shield Mining	2009
SRC8	120	-60	60	RC	Shield Mining	2009
SRC9	120	-55	60	RC	Shield Mining	2009
LRC10	300	-60	60	RC	Shield Mining	2010
LRC11	300	-60	60	RC	Shield Mining	2010
LRC12	300	-60	70	RC	Shield Mining	2010
LRC13	300	-60	60	RC	Shield Mining	2010
LRC14	300	-60	60	RC	Shield Mining	2010
LRC15	300	-60	60	RC	Shield Mining	2010
LRC16	300	-60	60	RC	Shield Mining	2010
LRC17	300	-60	60	RC	Shield Mining	2010
LRC18	300	-60	60	RC	Shield Mining	2010
LRC19	300	-60	60	RC	Shield Mining	2010
LRC20	300	-60	60	RC	Shield Mining	2010
LRC21	300	-60	60	RC	Shield Mining	2010
LRC22	300	-60	60	RC	Shield Mining	2010
LRC23	300	-60	60	RC	Shield Mining	2010
LRC24	300	-60	60	RC	Shield Mining	2010
LRC25	300	-60	60	RC	Shield Mining	2010
LRC26	300	-60	70	RC	Shield Mining	2010
LRC6	300	-60	60	RC	Shield Mining	2010
LRC7	300	-60	60	RC	Shield Mining	2010
LRC8	300	-60	60	RC	Shield Mining	2010
LRC9	300	-60	60	RC	Shield Mining	2010
SRC68	300	-60	61	RC	Shield Mining	2010
SRC69	300	-60	94	RC	Shield Mining	2010
SRC70	300	-60	60	RC	Shield Mining	2010
SRC71	300	-60	76	RC	Shield Mining	2010
SRC72	300	-60	110	RC	Shield Mining	2010
SRC73	300	-60	60	RC	Shield Mining	2010

Hole Name	Azimuth	Dip	Length	Hole Type	Owner	Year Drilled
SRC74	300	-60	90	RC	Shield Mining	2010
SRC75	300	-60	90	RC	Shield Mining	2010
SRC76	300	-60	60	RC	Shield Mining	2010
SRC77	300	-60	80	RC	Shield Mining	2010
SRC78	300	-60	90	RC	Shield Mining	2010
SRC79	300	-60	60	RC	Shield Mining	2010
SRC80	300	-60	60	RC	Shield Mining	2010
SRC81	300	-60	60	RC	Shield Mining	2010
SRC82	300	-60	60	RC	Shield Mining	2010
SRC83	300	-60	60	RC	Shield Mining	2010
SRC84	300	-60	60	RC	Shield Mining	2010
SRC85	300	-60	60	RC	Shield Mining	2010
SRC86	300	-60	60	RC	Shield Mining	2010
SRC87	300	-60	60	RC	Shield Mining	2010
SRC88	300	-60	60	RC	Shield Mining	2010
SRC89	300	-60	150	RC	Shield Mining	2010
SRC90	120	-60	140	RC	Shield Mining	2010
SRC91	300	-60	100	RC	Shield Mining	2010
11TRC001	301.15	-49.69	88	RC	Gryphon	2011
11TRC002	302.04	-48.36	100	RC	Gryphon	2011
11TRC003	298.94	-52.05	100	RC	Gryphon	2011
11TRC004	302.26	-50.59	100	RC	Gryphon	2011
11TRC005	300.27	-50	90	RC	Gryphon	2011
11TRC006	300.27	-49.85	98	RC	Gryphon	2011
11TRC007	300.75	-51.7799	115	RC	Gryphon	2011
11TRC008	298.76	-51	85	RC	Gryphon	2011
11TRC009	300	-50	120	RC	Gryphon	2011
11TRC010	302.89	-48.33	198	RC	Gryphon	2011
11TRC011	300	-50	242	RC	Gryphon	2011
11TRC012	294.31	-52.23	283	RC	Gryphon	2011
11TRC013	300	-50	320	RC	Gryphon	2011
11TRC014	300	-50	294	RC	Gryphon	2011
12TRC015	294.31	-52.23	154	RC	Gryphon	2012
12TRC016	300	-50	269	RC	Gryphon	2012
12TRC017	300.57	-50.88	107	RC	Gryphon	2012
12TRC018	304.07	-50.57	102	RC	Gryphon	2012
12TRC019	300	-50	180	RC	Gryphon	2012

Hole Name	Azimuth	Dip	Length	Hole Type	Owner	Year Drilled
12TRC020	300	-50	402	RC	Gryphon	2012
12TRC021	300	-50	414	RC	Gryphon	2012
12TRC022	303.47	-48.9402	354	RC	Gryphon	2012
12TRC023	301.22	-51.4601	147	RC	Gryphon	2012
12TRC024	300	-50	268	RC	Gryphon	2012
12TRC025	298.71	-56.2	324	RC	Gryphon	2012
12TRC026	300	-50	300	RC	Gryphon	2012
12TRC027	300	-50	336	RC	Gryphon	2012
12TRC028	300	-50	204	RC	Gryphon	2012
12TRC029	300	-50	216	RC	Gryphon	2012
12TRC030	300	-50	200	RC	Gryphon	2012
12TRC031	300	-50	187	RC	Gryphon	2012
12TRC032	300	-50	220	RC	Gryphon	2012
12TRC033	300	-50	204	RC	Gryphon	2012
12TRC034	300	-50	222	RC	Gryphon	2012
12TRC035	300	-50	200	RC	Gryphon	2012
12TRC036	300	-50	204	RC	Gryphon	2012
12TRC037	300	-50	204	RC	Gryphon	2012
12TRC038	300	-50	204	RC	Gryphon	2012
12TRC039	300	-50	204	RC	Gryphon	2012
12TRC040	300	-50	220	RC	Gryphon	2012
12TRC041	300	-50	200	RC	Gryphon	2012
12TRC042	300	-60	171	RC	Gryphon	2012
12TRC043	270	-50	100	RC	Gryphon	2012
12TRC044	270	-50	100	RC	Gryphon	2012
12TRC045	270	-50	102	RC	Gryphon	2012
12TRC046	270	-50	108	RC	Gryphon	2012
12TRC047	270	-50	102	RC	Gryphon	2012
12TRC048	270	-50	102	RC	Gryphon	2012
12TRC049	270	-50	102	RC	Gryphon	2012
12TRC050	270	-50	102	RC	Gryphon	2012
12TRC051	270	-50	100	RC	Gryphon	2012
12TRC052	270	-50	102	RC	Gryphon	2012
12TRC053	270	-50	100	RC	Gryphon	2012
12TRC054	270	-50	100	RC	Gryphon	2012
12TRC055	270	-50	100	RC	Gryphon	2012
12TRC056	270	-50	108	RC	Gryphon	2012

Hole Name	Azimuth	Dip	Length	Hole Type	Owner	Year Drilled
12TRC057	270	-50	100	RC	Gryphon	2012
12TRC058	270	-50	100	RC	Gryphon	2012
12TRC059	270	-50.4	100	RC	Gryphon	2012
12TRC060	270	-50	100	RC	Gryphon	2012
12TRC061	270	-50.9	100	RC	Gryphon	2012
12TRC062	270	-50	100	RC	Gryphon	2012
12TRC063	270	-50	108	RC	Gryphon	2012
12TRC064	270	-50	108	RC	Gryphon	2012
12TRC065	270	-50	108	RC	Gryphon	2012
12TRC066	270	-50	108	RC	Gryphon	2012
12TRC067	270	-50	100	RC	Gryphon	2012
12TRC068	270	-50	100	RC	Gryphon	2012
12TRC069	270	-50	100	RC	Gryphon	2012
12TRC070	270	-50	100	RC	Gryphon	2012
12TRC071	270	-50	100	RC	Gryphon	2012
12TRC072	270	-50	100	RC	Gryphon	2012
12TRC073	270	-50	100	RC	Gryphon	2012
12TRC074	270	-50	100	RC	Gryphon	2012
12TRC075	270	-50	200	RC	Gryphon	2012
12TRC076	270	-50	200	RC	Gryphon	2012
12TRC077	270	-50	200	RC	Gryphon	2012
12TRC078	270	-50	250	RC	Gryphon	2012
12TRC079	270	-50	258	RC	Gryphon	2012
12TRC080	270	-50	230	RC	Gryphon	2012
12TRC081	300	-50	330	RC	Gryphon	2012
12TRC082	300	-50	300	RC	Gryphon	2012
12TRC083	300	-50	150	RC	Gryphon	2012
12TRC084	300	-50	150	RC	Gryphon	2012
12TRC085	300	-50	100	RC	Gryphon	2012
12TRC086	300	-50	336	RC	Gryphon	2012
12TRC087	300	-50	230	RC	Gryphon	2012
12TRC088	300	-50	150	RC	Gryphon	2012
12TRC089	115	-60	360	RC	Gryphon	2012
12TRC090	45	-50	204	RC	Gryphon	2012
12TRC091	235	-50	150	RC	Gryphon	2012
12TRC092	0	-50	260	RC	Gryphon	2012
12TRC093	300	-50	216	RC	Gryphon	2012

Hole Name	Azimuth	Dip	Length	Hole Type	Owner	Year Drilled
12TRC094	300	-50	200	RC	Gryphon	2012
12TRC095	300	-50	200	RC	Gryphon	2012
12TRC096	300	-50	200	RC	Gryphon	2012
12TRC097	300	-50	200	RC	Gryphon	2012
12TRC098	300	-50	70	RC	Gryphon	2012
12TRC099	300	-50	108	RC	Gryphon	2012
12TRC100	300	-50	126	RC	Gryphon	2012
12TRC101	300	-50	120	RC	Gryphon	2012
12TRC102	300	-50	120	RC	Gryphon	2012
12TRC103	300	-50	102	RC	Gryphon	2012
12TRC104	300	-50	120	RC	Gryphon	2012
12TRC105	300	-50	200	RC	Gryphon	2012
12TRC106	300	-50	156	RC	Gryphon	2012
12TRC107	300	-50	150	RC	Gryphon	2012
12TRC108	300	-50	100	RC	Gryphon	2012
12TRC109	300	-50	100	RC	Gryphon	2012
12TRC110	300	-50	200	RC	Gryphon	2012
12TRC111	300	-50	200	RC	Gryphon	2012
12TRC112	300	-50	200	RC	Gryphon	2012
12TRC113	270	-50	168	RC	Gryphon	2012
12TRC114	270	-50	128	RC	Gryphon	2012
12TRC115	270	-50	162	RC	Gryphon	2012
12TRC116	270	-50	150	RC	Gryphon	2012
12TRC117	300	-50	155	RC	Gryphon	2012
12TRC118	300	-50	162	RC	Gryphon	2012
12TRC119	235	-50	114	RC	Gryphon	2012
12TRC120	270	-50	150	RC	Gryphon	2012
12TRC121	270	-50	150	RC	Gryphon	2012
12TRC122	270	-50	170	RC	Gryphon	2012
12TRC123	270	-50	180	RC	Gryphon	2012
12TRC124	270	-50	200	RC	Gryphon	2012
12TRC125	300	-50	156	RC	Gryphon	2012
12TRC126	270	-50	150	RC	Gryphon	2012
12TRC127	300	-50	180	RC	Gryphon	2012
12TRC128	300	-50	114	RC	Gryphon	2012
12TRC129	270	-50	200	RC	Gryphon	2012
12TRC130	270	-50	198	RC	Gryphon	2012

Hole Name	Azimuth	Dip	Length	Hole Type	Owner	Year Drilled
12TRC131	270	-50	200	RC	Gryphon	2012
12TRC132	270	-50	200	RC	Gryphon	2012
12TRC133	270	-50	200	RC	Gryphon	2012
12TRC134	270	-50	200	RC	Gryphon	2012
12TRC135	270	-50	100	RC	Gryphon	2012
12TRC136	270	-50	120	RC	Gryphon	2012
12TRC137	270	-50	200	RC	Gryphon	2012
12TRC138	300	-50	250	RC	Gryphon	2012
12TRC139	270	-50	200	RC	Gryphon	2012
12TRC140	270	-50	200	RC	Gryphon	2012
12TRC141	270	-50	200	RC	Gryphon	2012
12TRC142	270	-50	200	RC	Gryphon	2012
12TRC143	270	-50	200	RC	Gryphon	2012
12TRC144	270	-50	200	RC	Gryphon	2012
12TRC145	270	-50	200	RC	Gryphon	2012
12TRC146	270	-50	200	RC	Gryphon	2012
12TRC147	270	-50	200	RC	Gryphon	2012
12TRC148	270	-50	200	RC	Gryphon	2012
12TRC149	270	-50	200	RC	Gryphon	2012
12TRC150	270	-50	200	RC	Gryphon	2012
12TRC151	270	-50	200	RC	Gryphon	2012
12TRC152	270	-50	137	RC	Gryphon	2012
12TRC153	270	-50	200	RC	Gryphon	2012
12TRC154	270	-50	200	RC	Gryphon	2012
12TRC155	270	-50	200	RC	Gryphon	2012
12TRC156	270	-50	200	RC	Gryphon	2012
12TRC157	270	-50	114	RC	Gryphon	2012
12TRC158	270	-50	114	RC	Gryphon	2012
12TRC159	270	-50	200	RC	Gryphon	2012
12TRC160	300	-50	250	RC	Gryphon	2012
12TRC161	300	-50	200	RC	Gryphon	2012
12TRC162	300	-50	200	RC	Gryphon	2012
12TRC163	300	-50	200	RC	Gryphon	2012
12TRC164	300	-50	200	RC	Gryphon	2012
12TRC165	270	-50	200	RC	Gryphon	2012
12TRC166	90	-50	119	RC	Gryphon	2012
12TRC167	90	-50	36	RC	Gryphon	2012

Hole Name	Azimuth	Dip	Length	Hole Type	Owner	Year Drilled
12TRC168	90	-50	36	RC	Gryphon	2012
T16RC001	300	-50	132	RC	Algold	2016
T16RC002	290	-50	130	RC	Algold	2016
T16RC003	290	-50	130	RC	Algold	2016
T16RC004	290	-50	140	RC	Algold	2016
T16RC005	290	-50	140	RC	Algold	2016
T16RC006	300	-50	95	RC	Algold	2016
T16RC007	300	-50	95	RC	Algold	2016
T16RC008	300	-50	85	RC	Algold	2016
T16RC009	290	-50	130	RC	Algold	2016
T16RC010	300	-50	72	RC	Algold	2016
T16RC011	300	-50	18	RC	Algold	2016
T16RC012	300	-52	220	RC	Algold	2016
T16RC013	300	-49	204	RC	Algold	2016
T16RC014	300	-49	140	RC	Algold	2016
T16RC015	300	-50	171	RC	Algold	2016
T16RC016	305	-47	110	RC	Algold	2016
T16RC017	305	-47	85	RC	Algold	2016
T16RC018	305	-50	85	RC	Algold	2016
T16RC019	330	-50	150	RC	Algold	2016
T16RC020	330	-49.1	150	RC	Algold	2016
T16RC021	300	-48	120	RC	Algold	2016
T16RC022	300	-47	120	RC	Algold	2016
T16RC023	315	-47	80	RC	Algold	2016
T16RC024	300	-50	60	RC	Algold	2016
T16RC025	300.1	-49.6	130	RC	Algold	2016
T16RC026	301.9	-47.7	130	RC	Algold	2016
T16RC027	300.9	-47.7	140	RC	Algold	2016
T16RC028	300.2	-50.1	130	RC	Algold	2016
T16RC029	299	-49.9	136	RC	Algold	2016
T16RC030	299	-50	150	RC	Algold	2016
T16RC031	300.4	-50	150	RC	Algold	2016
T16RC032	298.9	-50	45	RC	Algold	2016
T16RC033	299.5	-50	150	RC	Algold	2016
T16RC034	300	-50	130	RC	Algold	2016
T16RC035	300	-49.1	150	RC	Algold	2016
T16RC036	300	-49.9	80	RC	Algold	2016

Hole Name	Azimuth	Dip	Length	Hole Type	Owner	Year Drilled
T16RC037	300	-50	126	RC	Algold	2016
T16RC038	300	-50	102	RC	Algold	2016
T16RC039	300	-50	132	RC	Algold	2016
T16RC040	300	-50	130	RC	Algold	2016
T16RC041	300	-50	130	RC	Algold	2016
T16RC042	300	-50	130	RC	Algold	2016
T16RC043	300	-50	60	RC	Algold	2016
T16RC044	300	-50	120	RC	Algold	2016
T16RC045	300	-50	120	RC	Algold	2016
T16RC046	300	-50	120	RC	Algold	2016
T16RC047	300	-50	130	RC	Algold	2016
T16RC048	290	-50	50	RC	Algold	2016
T16RC049	290	-50	50	RC	Algold	2016
T16RC050	300	-50	120	RC	Algold	2016
T16RC051	300	-50	120	RC	Algold	2016
T16RC052	300	-50	112	RC	Algold	2016
T16RC053	300	-50	120	RC	Algold	2016
T16RC054	300	-50	100	RC	Algold	2016
T16RC055	300	-50	120	RC	Algold	2016
T16RC056	300	-50	126	RC	Algold	2016
T16RC057	300	-50	120	RC	Algold	2016
T16RC058	300	-50	94	RC	Algold	2016
T16RC059	300	-50	65	RC	Algold	2016
T16RC060	290	-50	130	RC	Algold	2016
T16RC061	300	-50	152	RC	Algold	2016
T16RC062	275	-50	120	RC	Algold	2016
T16RC063	275	-50	120	RC	Algold	2016
T16RC064	300	-50	130	RC	Algold	2016
T16RC065	300	-50	116	RC	Algold	2016
T16RC066	300	-50	130	RC	Algold	2016
T16RC067	330	-50	87	RC	Algold	2016
T16RC068	330	-50	80	RC	Algold	2016
T16RC069	300	-50	158	RC	Algold	2016
T16RC070	300	-50	120	RC	Algold	2016
T16RC071	300	-50	120	RC	Algold	2016
T16RC072	300	-50	120	RC	Algold	2016
T16RC073	300	-50	214	RC	Algold	2016

Hole Name	Azimuth	Dip	Length	Hole Type	Owner	Year Drilled
T16RC074	300	-50	150	RC	Algold	2016
T16RC075	300	-50	120	RC	Algold	2016
T16RC076	300	-50	120	RC	Algold	2016
T16RC077	300	-50	120	RC	Algold	2016
T16RC078	300	-50	120	RC	Algold	2016
T16RC079	300	-50	122	RC	Algold	2016
T16RC080	300	-50	120	RC	Algold	2016
T16RC081	300	-50	200	RC	Algold	2016
T16RC082	270	-50	91	RC	Algold	2016
T16RC083	270	-50	42	RC	Algold	2016
T16RC084	270	-50	48	RC	Algold	2016
T16RC085	270	-50	70	RC	Algold	2016
T16RC086	290	-50	125	RC	Algold	2016
T16RC087	290	-50	130	RC	Algold	2016
T16RC088	290	-50	130	RC	Algold	2016
T16RC089	290	-50	130	RC	Algold	2016
T16RC090	290	-50	130	RC	Algold	2016
T16RC091	290	-50	125	RC	Algold	2016
T16RC092	340	-50	80	RC	Algold	2016
T16RC093	300	-50	120	RC	Algold	2016
T16RC094	300	-50	120	RC	Algold	2016
T16RC095	340	-50	60	RC	Algold	2016
T16RC096	340	-50	130	RC	Algold	2016
T16RC097	300	-50	125	RC	Algold	2016
T16RC098	300	-50	200	RC	Algold	2016
T16RC099	300	-50	80	RC	Algold	2016
T16RC100	300	-50	130	RC	Algold	2016
T16RC101	300	-50	125	RC	Algold	2016
T16RC102	300	-50	130	RC	Algold	2016
T16RC103	300	-50	130	RC	Algold	2016
T16RC104	300	-50	145	RC	Algold	2016
T16RC105	300	-50	120	RC	Algold	2016
T16RC106	300	-50	120	RC	Algold	2016
T16RC107	300	-50	220	RC	Algold	2016
T16RC108	300	-50	125	RC	Algold	2016
T16RC109	300	-50	125	RC	Algold	2016
T16RC110	270	-50	125	RC	Algold	2016

Hole Name	Azimuth	Dip	Length	Hole Type	Owner	Year Drilled
T16RC111	300	-50	70	RC	Algold	2016
T16RC112	300	-50	160	RC	Algold	2016
T16RC113	300	-50	160	RC	Algold	2016
T16RC114	300	-50	220	RC	Algold	2016
T16RC115	300	-50	150	RC	Algold	2016
T16RC116	300	-50	170	RC	Algold	2016
T16RC117	300	-50	120	RC	Algold	2016
T16RC118	300	-50	155	RC	Algold	2016
T16RC119	300	-50	170	RC	Algold	2016
T16RC120	300	-50	150	RC	Algold	2016
T16RC121	300	-50	72	RC	Algold	2016
T16RC122	300	-50	145	RC	Algold	2016
T16RC123	300	-50	150	RC	Algold	2016
T16RC124	300	-50	103	RC	Algold	2016
T16RC125	285	-50	143	RC	Algold	2016
T16RC126	300	-50	135	RC	Algold	2016
T16RC127	300	-50	130	RC	Algold	2016
T16RC128	290	-50	130	RC	Algold	2016
T16RC129	290	-50	125	RC	Algold	2016
T16RC130	340	-50	140	RC	Algold	2016
T16RC131	300	-50	180	RC	Algold	2016
T16RC132	300	-50	155	RC	Algold	2016
T16RC133	300	-50	145	RC	Algold	2016
T16RC134	300	-50	120	RC	Algold	2016
T16RC135	340	-50	45	RC	Algold	2016
T16RC136**	340	-50	193	RC	Algold	2016
T16RC137	300	-50	169	RC	Algold	2016
T16RC138	300	-50	120	RC	Algold	2016
T16RC139	280	-50	140	RC	Algold	2016
T16RC140	280.1	-50	120	RC	Algold	2016
T16RC141	300	-50	40	RC	Algold	2016
T16RC142	300	-50	157	RC	Algold	2016
T16RC143	300	-50	170	RC	Algold	2016
T16RC144	300	-50	205	RC	Algold	2016
T16RC145	300	-50	100	RC	Algold	2016
T16RC146	300	-50	120	RC	Algold	2016
T16RC147	270	-50	100	RC	Algold	2016

Hole Name	Azimuth	Dip	Length	Hole Type	Owner	Year Drilled
T16RC148	280	-50	70	RC	Algold	2016
T16RC149	280	-50	109	RC	Algold	2016
T16RC150	280	-50	140	RC	Algold	2016
T17RC001	300	-50	127	RC	Algold	2017
T17RC002	300	-50	120	RC	Algold	2017
T17RC003	300	-50	120	RC	Algold	2017
T17RC004	300	-50	127	RC	Algold	2017
T17RC005	300	-50	120	RC	Algold	2017
T17RC006	280	-50	115	RC	Algold	2017
T17RC007	280	-50	133	RC	Algold	2017
T17RC008	280	-50	155	RC	Algold	2017
T17RC009	290	-50	120	RC	Algold	2017
T17RC010	290	-50	120	RC	Algold	2017
T17RC011	300	-50	50	RC	Algold	2017
T17RC012	291	-50	120	RC	Algold	2017
T17RC013	280	-50	250	RC	Algold	2017
T17RC014	290	-50	140	RC	Algold	2017
T17RC015	290	-50	80	RC	Algold	2017
T17RC016	300	-50	209	RC	Algold	2017
T17RC017	300	-50	120	RC	Algold	2017
T17RC018	300	-50	125	RC	Algold	2017
T17RC019	280	-50	120	RC	Algold	2017
T17RC020	280	-50	107	RC	Algold	2017
T17RC021	280	-50	120	RC	Algold	2017
T17RC022	280	-50	120	RC	Algold	2017
T17RC023	280	-50	133	RC	Algold	2017
T17RC024	285.26	-50.65	135	RC	Algold	2017
T17RC025	280	-50	160	RC	Algold	2017
T17RC026	280	-50	120	RC	Algold	2017
T17RC027	300	-50	120	RC	Algold	2017
T17RC028	300	-50	120	RC	Algold	2017
T17RC029	280	-50	50	RC	Algold	2017
T17RC030	300	-50	150	RC	Algold	2017
T17RC031	300	-50	150	RC	Algold	2017
T17RC032	300	-50	130	RC	Algold	2017
T17RC033	290	-50	120	RC	Algold	2017
T17RC034	300	-50	140	RC	Algold	2017

Hole Name	Azimuth	Dip	Length	Hole Type	Owner	Year Drilled
T17RC035	300	-50	120	RC	Algold	2017
T17RC036	280	-50	120	RC	Algold	2017
T17RC037	300	-50	50	RC	Algold	2017
T17RC038	270	-50	55	RC	Algold	2017
T17RC039	280	-50	120	RC	Algold	2017
T17RC040	280	-50	120	RC	Algold	2017
T17RC041	280	-50	120	RC	Algold	2017
T17RC042	280	-50	120	RC	Algold	2017
T17RC043	300	-50	50	RC	Algold	2017
T17RC044	280	-50	120	RC	Algold	2017
T17RC045	300	-50	120	RC	Algold	2017
T17RC046	300	-50	120	RC	Algold	2017
T17RC047	300	-50	110	RC	Algold	2017
T17RC048	300	-50	100	RC	Algold	2017
T17RC049	300	-50	100	RC	Algold	2017
T17RC050	300	-50	170	RC	Algold	2017
T17RC051	280	-50	50	RC	Algold	2017
T17RC052	300	-50	67	RC	Algold	2017
T17RC053	300	-50	100	RC	Algold	2017
T17RC054	300	-50	90	RC	Algold	2017
T17RC055	300	-50	150	RC	Algold	2017
T17RC056	300	-50	145	RC	Algold	2017
T17RC057	300	-50	150	RC	Algold	2017
T17RC058	340	-50	130	RC	Algold	2017
T17RC059	340	-50	120	RC	Algold	2017
T17RC060	290	-50	150	RC	Algold	2017
T17RC061	290	-50	120	RC	Algold	2017
T17RC062	290	-50	100	RC	Algold	2017
T17RC063	290	-50	101	RC	Algold	2017
T17RC064	280	-50	20	RC	Algold	2017
T17RC065	290	-50	30	RC	Algold	2017
T17RC066	300	-50	100	RC	Algold	2017
T17RC067	300	-50	60	RC	Algold	2017
T17RC068	300	-50	20	RC	Algold	2017
T17RC069	290	-50	121	RC	Algold	2017
T17RC070	290	-50	120	RC	Algold	2017
T17RC071	290	-50	120	RC	Algold	2017

Hole Name	Azimuth	Dip	Length	Hole Type	Owner	Year Drilled
T17RC072	290	-50	120	RC	Algold	2017
T17RC073	300	-50	175	RC	Algold	2017
T17RC074	280	-50	120	RC	Algold	2017
T17RC075	280	-50	251	RC	Algold	2017
T17RC076	280	-50	160	RC	Algold	2017
T17RC077	280	-50	120	RC	Algold	2017
T17RC078	280	-50	120	RC	Algold	2017
T17RC079	340	-50	157	RC	Algold	2017
T17RC080	340	-50	211	RC	Algold	2017
T17RC081	300.89	-50.41	30	RC	Algold	2017
T17RC082	300	-50	190	RC	Algold	2017
T17RC083	300	-50	13	RC	Algold	2017
T17RC084	300	-50	231	RC	Algold	2017
T17RC085A	300	-50	24	RC	Algold	2017
T17RC085B	300	-50	50	RC	Algold	2017
T17RC086**	280	-50	154	RC	Algold	2017
T17RC087	280	-50	120	RC	Algold	2017
T17RC088	300	-50	120	RC	Algold	2017
T17RC089	300	-50	133	RC	Algold	2017
T17RC090	300	-50	120	RC	Algold	2017
T17RC091	300	-50	120	RC	Algold	2017
T17RC092	280	-50	120	RC	Algold	2017
T17RC093	100	-50	120	RC	Algold	2017
T17RC094	100	-50	120	RC	Algold	2017
T17RC095	100	-50	120	RC	Algold	2017
T17RC096A	280	-50	157	RC	Algold	2017
T17RC096B	280	-50	230	RC	Algold	2017
T17RC097	280	-50	120	RC	Algold	2017
T17RC098	280	-50	150	RC	Algold	2017
T17RC099	300	-50	120	RC	Algold	2017
T17RC100	300	-50	120	RC	Algold	2017
T17RC101	280	-50	241	RC	Algold	2017
T17RC102	280	-50	185	RC	Algold	2017
T17RC103	300	-52	80	RC	Algold	2017
T17RC104	280	-50	120	RC	Algold	2017
T17RC105A	300	-50	94	RC	Algold	2017
T17RC105B	300	-50	130	RC	Algold	2017

Hole Name	Azimuth	Dip	Length	Hole Type	Owner	Year Drilled
T17RC106	300	-50	193	RC	Algold	2017
T17RC107	280	-50	133	RC	Algold	2017
T17RC108	300	-48	280	RC	Algold	2017
T17RC109	340	-50	133	RC	Algold	2017
T17RC110	300	-50	238	RC	Algold	2017
T17RC111	300	-50	200	RC	Algold	2017
T17RC112	280	-50	150	RC	Algold	2017
T17RC113	300	-50	170	RC	Algold	2017
T17RC114	300	-50	139	RC	Algold	2017
T17RC115	300	-50	73	RC	Algold	2017
T17RC116	300	-50	200	RC	Algold	2017
T17RC117	300	-50	80	RC	Algold	2017
T17RC118	300	-50	232	RC	Algold	2017
T17RC119	300	-50	250	RC	Algold	2017
T17RC120	280	-50	301	RC	Algold	2017
T17RC121	280	-50	100	RC	Algold	2017
T17RC122	280	-50	100	RC	Algold	2017
T17RC123	280	-50	120	RC	Algold	2017
T17RC124	280	-50	120	RC	Algold	2017
T17RC125	300	-50	122	RC	Algold	2017
T17RC126	300	-50	120	RC	Algold	2017
T17RC127	300	-50	120	RC	Algold	2017
T17RC128	300	-50	120	RC	Algold	2017
T17RC129	300	-50	104	RC	Algold	2017
T17RC130	300	-50	120	RC	Algold	2017
T17RC131	270	-50	100	RC	Algold	2017
T17RC132	290	-50	80	RC	Algold	2017
T17RC133	270	-50	100	RC	Algold	2017
T17RC134	270	-50	160	RC	Algold	2017
T17RC135	280	-50	120	RC	Algold	2017
T17RC136	280	-50	120	RC	Algold	2017
T17RC137	280	-50	172	RC	Algold	2017
T17RC138	300	-50	172	RC	Algold	2017
T17RC139	280	-50	100	RC	Algold	2017
T17RC140	270	-50	150	RC	Algold	2017
T17RC141	280	-50	160	RC	Algold	2017
T17RC142	280	-50	200	RC	Algold	2017

Hole Name	Azimuth	Dip	Length	Hole Type	Owner	Year Drilled
T17RC143	280	-50	120	RC	Algold	2017
T17RC144	280	-50	121	RC	Algold	2017
T17RC145	280	-50	150	RC	Algold	2017
T17RC146	282	-50	220	RC	Algold	2017
T17RC147	280	-50	120	RC	Algold	2017
T17RC148	280	-50	150	RC	Algold	2017
T17RC149	280	-50	120	RC	Algold	2017
T17RC150	280	-50	121	RC	Algold	2017
T17RC151	280	-50	128	RC	Algold	2017
T17RC152	120	-50	85	RC	Algold	2017
T17RC153	300	-50	182	RC	Algold	2017
T17RC154	280	-50	103	RC	Algold	2017
T17RC155	300	-50	313	RC	Algold	2017
T17RC156	300	-50	73	RC	Algold	2017
T17RC157	300	-50	148	RC	Algold	2017
T17RC158	300	-50	115	RC	Algold	2017
T17RC159	310	-50	150	RC	Algold	2017
T17RC160	310	-50	150	RC	Algold	2017
T17RC161	310	-50	125	RC	Algold	2017
T17RC162	310	-50	125	RC	Algold	2017
T17RC163	310	-50	130	RC	Algold	2017
T17RC164	310	-50	125	RC	Algold	2017
T17RC165	300	-50	40	RC	Algold	2017
T17RC166	320	-50	40	RC	Algold	2017
T17RC167	300	-60	80	RC	Algold	2017
T17RC168	300	-60	181	RC	Algold	2017
T17RC169	300	-60	125	RC	Algold	2017
T17RC170	300	-50	130	RC	Algold	2017
T17RC171	300	-50	120	RC	Algold	2017
T17RC172	300	-50	130	RC	Algold	2017
T17RC173	300	-50	156	RC	Algold	2017
T17RC174	300	-50	247	RC	Algold	2017
T17RC175	300	-50	176	RC	Algold	2017
T17RC176	300	-50	265	RC	Algold	2017
T17RC177	300	-50	349	RC	Algold	2017
T17RC178	300	-50	220	RC	Algold	2017
T17RC179	280	-50	200	RC	Algold	2017

Hole Name	Azimuth	Dip	Length	Hole Type	Owner	Year Drilled
T17RC180	280	-50	100	RC	Algold	2017
T17RC181	280	-50	144	RC	Algold	2017
T17RC182	280	-50	60	RC	Algold	2017

* The RC hole SRC63 has been extended with diamond drilling and renamed SRD63, which is found in the previous table. For the other holes beginning by T16RD and T17RD found also in the previous table, they are also an extension of their RC hole (TR16RC and TR17RC), but are not included in the present table.

** These RC holes are not accounted for the resource estimate because they do not contain detailed assays that allow for their use.

30. Annex III – Drillholes Intersections Above 0.27 g/t Au

Hole Name	East	North	Zone	From	То	Length	Grade g/t Au
11TRC001	476044	2244826	Lily	28	30	2	1.48
11TRC001	476041	2244828	Lily	34	35	1	0.30
11TRC001	476036	2244832	Lily	43	45	2	0.54
11TRC001	476030	2244836	Lily	53	54	1	0.38
11TRC001	476029	2244837	Lily	56	57	1	0.49
11TRC001	476027	2244838	Lily	59	60	1	0.67
11TRC001	476014	2244848	Lily	83	84	1	0.38
11TRC002	476145	2244944	Lily	15	17	2	0.44
11TRC002	476140	2244948	Lily	25	26	1	0.31
11TRC002	476137	2244949	Lily	27	32	5	0.43
11TRC002	476132	2244953	Lily	39	40	1	0.53
11TRC002	476130	2244955	Lily	44	45	1	0.62
11TRC002	476108	2244971	Lily	86	87	1	0.55
11TRC003	476459	2245369	Lily	0	1	1	0.41
11TRC003	476455	2245370	Lily	5	8	3	0.55
11TRC003	476450	2245374	Lily	16	18	2	1.09
11TRC003	476446	2245376	Lily	23	24	1	0.33
11TRC003	476442	2245378	Lily	30	31	1	0.58
11TRC003	476437	2245381	Lily	38	42	4	1.08
11TRC003	476429	2245384	Lily	51	55	4	1.71
11TRC003	476425	2245387	Lily	59	63	4	3.19
11TRC003	476410	2245395	Lily	88	89	1	2.57
11TRC009	474417	2247382	Sophie III	63	64	1	0.39
11TRC010	476095	2244796	Lily	22	27	5	0.87
11TRC010	476089	2244800	Lily	33	35	2	0.41
11TRC010	476073	2244812	Lily	62	63	1	0.31
11TRC010	476072	2244812	Lily	64	65	1	0.32
11TRC010	476070	2244814	Lily	68	69	1	0.30
11TRC010	476069	2244815	Lily	70	72	2	0.46
11TRC010	476065	2244818	Lily	78	79	1	0.47
11TRC010	476055	2244824	Lily	96	97	1	0.77
11TRC010	476049	2244829	Lily	105	114	9	0.67
11TRC010	476029	2244842	Lily	149	150	1	0.34
11TRC010	476025	2244844	Lily	155	158	3	0.36
11TRC010	476019	2244848	Lily	169	170	1	0.62

Table 30-1: Drillholes Intersections Above 0.27 g/t Au

Hole Name	East	North	Zone	From	То	Length	Grade g/t Au
11TRC011	476219	2244901	Lily	38	39	1	0.38
11TRC011	476211	2244906	Lily	54	55	1	0.34
11TRC011	476209	2244907	Lily	57	58	1	0.33
11TRC011	476192	2244918	Lily	90	91	1	0.33
11TRC011	476183	2244923	Lily	106	111	5	0.37
11TRC011	476173	2244928	Lily	127	128	1	0.50
11TRC011	476170	2244930	Lily	133	136	3	0.55
11TRC011	476165	2244932	Lily	140	147	7	0.38
11TRC011	476161	2244934	Lily	148	155	7	0.52
11TRC011	476156	2244936	Lily	161	162	1	1.05
11TRC011	476153	2244938	Lily	167	168	1	0.40
11TRC011	476151	2244939	Lily	172	173	1	0.30
11TRC011	476133	2244947	Lily	208	209	1	0.88
11TRC011	476122	2244952	Lily	230	232	2	0.40
11TRC011	476118	2244954	Lily	239	240	1	0.30
11TRC012	476508	2245345	Lily	64	67	3	0.32
11TRC012	476506	2245347	Lily	70	71	1	0.72
11TRC012	476504	2245348	Lily	73	77	4	0.45
11TRC012	476496	2245353	Lily	90	91	1	0.35
11TRC012	476492	2245355	Lily	96	99	3	1.72
11TRC012	476489	2245357	Lily	104	105	1	0.40
11TRC012	476485	2245359	Lily	109	114	5	0.46
11TRC012	476478	2245363	Lily	122	130	8	0.59
11TRC012	476473	2245367	Lily	133	141	8	0.99
11TRC012	476467	2245370	Lily	147	151	4	0.33
11TRC012	476460	2245374	Lily	158	166	8	0.38
11TRC012	476448	2245382	Lily	186	187	1	0.33
11TRC012	476446	2245383	Lily	190	191	1	0.36
11TRC012	476442	2245385	Lily	195	203	8	0.98
11TRC012	476438	2245387	Lily	204	208	4	0.47
11TRC012	476435	2245390	Lily	212	214	2	0.31
11TRC012	476432	2245391	Lily	217	219	2	0.34
11TRC012	476428	2245393	Lily	224	228	4	2.02
11TRC012	476425	2245395	Lily	231	232	1	0.36
11TRC012	476424	2245396	Lily	234	235	1	1.20
11TRC012	476411	2245404	Lily	260	261	1	0.90
11TRC012	476407	2245406	Lily	264	270	6	1.09
11TRC014	476785	2245727	Lily	268	269	1	0.70
11TRC014	476780	2245729	Lily	279	280	1	0.81

Hole Name	East	North	Zone	From	То	Length	Grade g/t Au
12TRC015	476812	2245708	Lily	32	39	7	1.01
12TRC015	476808	2245710	Lily	41	46	5	0.59
12TRC015	476803	2245713	Lily	53	54	1	0.32
12TRC015	476801	2245714	Lily	57	58	1	1.99
12TRC015	476798	2245716	Lily	62	63	1	0.30
12TRC015	476796	2245717	Lily	67	68	1	0.36
12TRC015	476794	2245718	Lily	69	74	5	0.81
12TRC015	476791	2245720	Lily	77	78	1	0.59
12TRC015	476789	2245721	Lily	81	82	1	0.43
12TRC015	476772	2245732	Lily	114	116	2	2.27
12TRC015	476767	2245734	Lily	124	125	1	0.59
12TRC019	476567	2245467	Lily	12	13	1	0.37
12TRC019	476565	2245469	Lily	15	19	4	0.83
12TRC019	476555	2245474	Lily	34	35	1	0.43
12TRC019	476549	2245478	Lily	47	48	1	0.67
12TRC019	476546	2245480	Lily	53	54	1	0.44
12TRC019	476538	2245484	Lily	55	83	28	1.55
12TRC019	476528	2245490	Lily	85	91	6	0.82
12TRC019	476517	2245496	Lily	98	123	25	1.14
12TRC019	476505	2245503	Lily	134	135	1	0.30
12TRC019	476503	2245504	Lily	137	138	1	0.31
12TRC019	476496	2245508	Lily	151	152	1	0.31
12TRC020	476570	2245470	Lily	305	306	1	1.13
12TRC021	476391	2245254	Lily	321	322	1	0.43
12TRC022	476382	2245133	Lily	75	76	1	0.52
12TRC022	476375	2245138	Lily	93	95	2	4.20
12TRC022	476372	2245140	Lily	99	104	5	0.67
12TRC022	476369	2245142	Lily	106	112	6	0.48
12TRC022	476365	2245145	Lily	118	122	4	0.57
12TRC022	476361	2245147	Lily	130	131	1	0.56
12TRC022	476350	2245154	Lily	159	163	4	0.37
12TRC022	476349	2245154	Lily	165	166	1	0.90
12TRC022	476346	2245156	Lily	173	174	1	1.98
12TRC022	476345	2245156	Lily	177	178	1	0.42
12TRC022	476334	2245162	Lily	216	219	3	0.39
12TRC022	476319	2245169	Lily	275	276	1	0.34
12TRC022	476316	2245170	Lily	282	289	7	0.50
12TRC022	476313	2245171	Lily	290	300	10	0.88
12TRC023	476326	2245166	Lily	10	11	1	0.35

Hole Name	East	North	Zone	From	То	Length	Grade g/t Au
12TRC023	476320	2245170	Lily	21	22	1	1.12
12TRC023	476311	2245176	Lily	36	38	2	0.52
12TRC023	476308	2245178	Lily	41	45	4	0.41
12TRC023	476302	2245182	Lily	55	56	1	0.40
12TRC023	476290	2245190	Lily	78	82	4	2.29
12TRC023	476288	2245191	Lily	83	84	1	0.32
12TRC024	476371	2244996	Lily	41	42	1	0.56
12TRC024	476366	2244998	Lily	49	50	1	0.50
12TRC024	476315	2245028	Lily	139	140	1	0.31
12TRC024	476301	2245036	Lily	164	165	1	0.32
12TRC024	476266	2245056	Lily	221	231	10	0.68
12TRC024	476261	2245059	Lily	234	235	1	0.34
12TRC024	476260	2245060	Lily	236	237	1	0.55
12TRC024	476256	2245062	Lily	241	247	6	0.37
12TRC024	476244	2245069	Lily	263	265	2	1.35
12TRC025	476443	2244959	Lily	118	120	2	1.23
12TRC025	476411	2244978	Lily	182	183	1	0.32
12TRC025	476371	2245002	Lily	259	260	1	0.34
12TRC026	476891	2245288	Lily	3	4	1	0.62
12TRC026	476857	2245308	Lily	69	70	1	0.32
12TRC026	476834	2245321	Lily	125	126	1	0.61
12TRC026	476832	2245323	Lily	131	132	1	0.30
12TRC026	476823	2245328	Lily	152	153	1	0.56
12TRC026	476787	2245348	Lily	233	235	2	2.32
12TRC027	476108	2244636	Lily	19	20	1	0.40
12TRC027	476086	2244649	Lily	63	64	1	0.36
12TRC027	476073	2244657	Lily	89	90	1	1.86
12TRC027	476071	2244658	Lily	93	94	1	0.38
12TRC028	475972	2244716	Lily	121	122	1	0.32
12TRC028	475971	2244716	Lily	123	124	1	1.21
12TRC028	475967	2244718	Lily	131	132	1	0.34
12TRC028	475964	2244720	Lily	139	140	1	0.47
12TRC028	475961	2244722	Lily	146	147	1	0.42
12TRC029	476659	2244837	Lily	14	15	1	0.38
12TRC032	477168	2244480	Lily	131	132	1	0.38
12TRC032	477120	2244507	Lily	216	217	1	0.37
12TRC032	477119	2244508	Lily	218	219	1	0.30
12TRC033	476761	2244058	Lily	182	183	1	0.45
12TRC033	476753	2244063	Lily	196	197	1	1.42

Hole Name	East	North	Zone	From	То	Length	Grade g/t Au
12TRC036	476529	2244198	Lily	46	47	1	0.39
12TRC036	476527	2244199	Lily	50	51	1	1.24
12TRC036	476521	2244202	Lily	61	62	1	0.31
12TRC039	475984	2244139	Lily	179	180	1	0.38
12TRC040	475950	2244159	Lily	52	53	1	0.43
12TRC040	475915	2244179	Lily	116	117	1	0.33
12TRC044	480918	2248778	Eleonore	44	45	1	0.40
12TRC044	480911	2248778	Eleonore	55	56	1	3.96
12TRC046	481037	2248778	Eleonore	21	22	1	0.90
12TRC048	481132	2248777	Eleonore	25	26	1	0.66
12TRC048	481117	2248777	Eleonore	47	50	3	0.72
12TRC048	481110	2248777	Eleonore	58	61	3	1.93
12TRC048	481088	2248777	Eleonore	93	94	1	0.49
12TRC049	481147	2248776	Eleonore	79	80	1	0.65
12TRC049	481140	2248776	Eleonore	89	92	3	1.91
12TRC049	481134	2248776	Eleonore	99	100	1	0.47
12TRC051	481259	2248776	Eleonore	57	58	1	0.61
12TRC052	481286	2248775	Eleonore	98	99	1	0.33
12TRC053	481598	2248775	Eleonore	2	3	1	1.09
12TRC053	481566	2248775	Eleonore	49	50	1	0.36
12TRC053	481557	2248775	Eleonore	63	64	1	0.30
12TRC053	481554	2248775	Eleonore	67	68	1	3.69
12TRC054	481625	2248775	Eleonore	38	39	1	0.84
12TRC054	481617	2248775	Eleonore	51	52	1	0.31
12TRC054	481615	2248775	Eleonore	54	55	1	0.31
12TRC054	481609	2248775	Eleonore	63	64	1	0.30
12TRC055	481679	2248775	Eleonore	36	37	1	0.30
12TRC055	481678	2248775	Eleonore	38	39	1	1.06
12TRC055	481673	2248775	Eleonore	45	46	1	0.44
12TRC056	481732	2248776	Eleonore	26	27	1	0.73
12TRC056	481711	2248776	Eleonore	59	61	2	2.71
12TRC056	481703	2248776	Eleonore	70	74	4	1.54
12TRC056	481698	2248776	Eleonore	79	80	1	1.10
12TRC056	481681	2248776	Eleonore	102	108	6	0.64
12TRC057	481792	2248776	Eleonore	14	15	1	1.49
12TRC060	481874	2248420	Eleonore	35	36	1	0.45
12TRC061	481921	2248419	Eleonore	44	45	1	0.68
12TRC065	480682	2248779	Eleonore	98	99	1	0.30
12TRC078	485513	2259467	Eleonore	0	1	1	0.62

Hole Name	East	North	Zone	From	То	Length	Grade g/t Au
12TRC081	475417	2248718	Sophie	206	212	6	0.52
12TRC081	475410	2248722	Sophie	219	228	9	0.86
12TRC081	475406	2248724	Sophie	231	232	1	0.36
12TRC081	475404	2248726	Sophie	235	236	1	0.66
12TRC081	475400	2248728	Sophie	241	247	6	0.45
12TRC081	475393	2248732	Sophie	256	257	1	0.40
12TRC081	475388	2248735	Sophie	266	267	1	8.36
12TRC081	475374	2248743	Sophie	294	295	1	0.30
12TRC081	475369	2248745	Sophie	303	304	1	0.32
12TRC081	475363	2248749	Sophie	315	316	1	0.49
12TRC082	475660	2248983	Sophie	226	228	2	0.46
12TRC082	475658	2248984	Sophie	230	233	3	0.56
12TRC082	475634	2248998	Sophie	283	287	4	1.05
12TRC082	475631	2249000	Sophie	293	294	1	0.43
12TRC082	475629	2249001	Sophie	297	300	3	1.28
12TRC083	475235	2248416	Sophie	75	76	1	0.38
12TRC083	475229	2248419	Sophie	85	86	1	0.45
12TRC083	475227	2248420	Sophie	88	89	1	0.41
12TRC083	475225	2248421	Sophie	91	94	3	0.57
12TRC083	475221	2248424	Sophie	98	101	3	0.50
12TRC083	475216	2248426	Sophie	107	110	3	0.64
12TRC084	475742	2249144	Sophie	87	88	1	0.66
12TRC085	475218	2248422	Sophie	23	24	1	0.44
12TRC085	475215	2248423	Sophie	26	32	6	0.45
12TRC085	475211	2248426	Sophie	34	40	6	0.46
12TRC085	475207	2248428	Sophie	43	44	1	0.60
12TRC085	475204	2248430	Sophie	46	49	3	1.21
12TRC085	475177	2248445	Sophie	94	95	1	0.33
12TRC086	475227	2248424	Sophie	177	179	2	0.50
12TRC086	475219	2248429	Sophie	194	195	1	0.32
12TRC086	475166	2248459	Sophie	300	301	1	0.73
12TRC087	475121	2248277	Sophie	40	41	1	0.55
12TRC087	475114	2248280	Sophie	52	54	2	0.80
12TRC087	475112	2248282	Sophie	57	58	1	0.32
12TRC088	475063	2248315	Sophie	17	19	2	0.34
12TRC088	475060	2248316	Sophie	23	24	1	0.32
12TRC089	475387	2248965	Sophie	68	69	1	0.52
12TRC090	475658	2250721	Sophie	139	175	36	0.95
12TRC090	475667	2250730	Sophie	176	177	1	0.30

Hole Name	East	North	Zone	From	То	Length	Grade g/t Au
12TRC090	475670	2250733	Sophie	178	190	12	0.45
12TRC090	475675	2250739	Sophie	194	197	3	0.40
12TRC090	475678	2250741	Sophie	199	204	5	0.51
12TRC092	475572	2250654	Sophie	93	94	1	0.50
12TRC092	475572	2250658	Sophie	100	101	1	0.66
12TRC092	475572	2250665	Sophie	110	111	1	1.09
12TRC092	475572	2250688	Sophie	146	147	1	0.85
12TRC092	475572	2250690	Sophie	149	150	1	1.28
12TRC092	475572	2250702	Sophie	166	172	6	1.23
12TRC093	475694	2250956	Sophie	50	59	9	2.42
12TRC093	475688	2250960	Sophie	66	67	1	0.46
12TRC093	475615	2251002	Sophie	196	197	1	6.76
12TRC093	475610	2251005	Sophie	205	206	1	1.18
12TRC099	476793	2246537	Lily	94	98	4	0.45
12TRC104	477281	2246268	Lily	36	37	1	1.25
12TRC110	477482	2246143	Lily	40	41	1	0.36
12TRC111	477497	2246131	Lily	174	176	2	0.37
12TRC112	477679	2246022	Lily	33	34	1	0.50
12TRC113	474200	2250840	Sophie I	31	32	1	0.38
12TRC113	474198	2250840	Sophie I	33	37	4	0.70
12TRC117	474708	2251587	Sophie I	92	94	2	3.28
12TRC117	474703	2251590	Sophie I	102	103	1	0.50
12TRC118	474678	2251605	Sophie I	12	13	1	1.96
12TRC118	474674	2251607	Sophie I	19	21	2	6.38
12TRC118	474670	2251610	Sophie I	25	31	6	5.05
12TRC118	474636	2251629	Sophie I	87	88	1	0.41
12TRC119	475568	2250720	Sophie I	26	38	12	0.83
12TRC119	475563	2250717	Sophie I	40	41	1	0.33
12TRC119	475561	2250716	Sophie I	42	45	3	0.61
12TRC126	475171	2249799	Sophie III	61	64	3	2.23
12TRC127	475584	2250798	Sophie III	31	32	1	0.31
12TRC127	475579	2250802	Sophie III	33	51	18	0.96
12TRC127	475555	2250815	Sophie III	84	85	1	2.86
12TRC127	475552	2250817	Sophie III	89	91	2	1.32
12TRC127	475542	2250823	Sophie III	107	110	3	1.83
12TRC130	482031	2252672	Eleonore	1	2	1	0.48
12TRC134	485808	2251476	Eleonore	41	45	4	2.07
12TRC135	485685	2251473	Eleonore	37	38	1	0.34
12TRC135	485680	2251473	Eleonore	45	46	1	0.41

Hole Name	East	North	Zone	From	То	Length	Grade g/t Au
12TRC135	485674	2251473	Eleonore	54	55	1	0.77
12TRC135	485669	2251473	Eleonore	62	63	1	0.32
12TRC136	485557	2251485	Eleonore	47	52	5	0.70
12TRC136	485548	2251485	Eleonore	55	71	16	0.74
12TRC136	485539	2251485	Eleonore	74	80	6	0.60
12TRC137	485455	2251474	Eleonore	21	24	3	0.39
12TRC137	485453	2251474	Eleonore	26	27	1	0.61
12TRC137	485441	2251474	Eleonore	41	48	7	0.78
12TRC137	485436	2251474	Eleonore	52	54	2	3.16
12TRC137	485385	2251474	Eleonore	132	133	1	0.47
12TRC138	482302	2249836	Eleonore	35	37	2	4.44
12TRC138	482292	2249841	Eleonore	51	54	3	1.73
12TRC138	482290	2249843	Eleonore	56	57	1	0.46
12TRC138	482278	2249850	Eleonore	78	79	1	0.32
12TRC138	482272	2249853	Eleonore	86	91	5	2.56
12TRC138	482268	2249855	Eleonore	94	98	4	5.23
12TRC138	482263	2249858	Eleonore	104	106	2	0.44
12TRC138	482213	2249887	Eleonore	195	196	1	0.31
12TRC138	482191	2249900	Eleonore	234	235	1	0.44
12TRC138	482186	2249903	Eleonore	243	244	1	0.31
12TRC141	487149	2258198	Eleonore	165	166	1	2.92
12TRC142	487021	2258199	Eleonore	168	169	1	11.75
12TRC159	476841	2255319	Sophie	76	77	1	0.50
12TRC160	475290	2248607	Sophie	183	184	1	0.51
12TRC160	475287	2248609	Sophie	189	190	1	0.33
12TRC160	475284	2248610	Sophie	192	197	5	0.56
12TRC160	475280	2248613	Sophie	200	204	4	1.06
12TRC160	475276	2248615	Sophie	207	212	5	0.66
12TRC160	475270	2248618	Sophie	218	220	2	0.31
12TRC160	475268	2248619	Sophie	221	225	4	0.45
12TRC163	477966	2246971	Lily	0	1	1	0.39
12TRC166	486091	2250829	Eleonore	81	85	4	1.52
12TRC166	486099	2250829	Eleonore	95	96	1	0.40
12TRC166	486110	2250829	Eleonore	112	113	1	0.38
12TRC167	486117	2250830	Eleonore	14	15	1	16.95
ECD1	482206	2249891	Eleonore	17	20	3	9.85
ECD1	482198	2249896	Eleonore	31	34	3	0.53
ECD2	482052	2248984	Eleonore	45	46	1	0.58
ECD2	482041	2248990	Eleonore	66	67	1	0.37

Hole Name	East	North	Zone	From	То	Length	Grade g/t Au
ECD2	482038	2248992	Eleonore	70	71	1	1.36
ECD2	482010	2249008	Eleonore	121	122	1	0.85
ECD3	482024	2249116	Eleonore	187	190	3	0.85
ECD3	482017	2249120	Eleonore	200	201	1	1.08
ECD4	481928	2248939	Eleonore	175	176	1	9.20
ECD4	481906	2248952	Eleonore	214	215	1	0.34
ECD4	481904	2248953	Eleonore	218	219	1	1.29
ECD4	481874	2248970	Eleonore	271	272	1	5.97
ERC4	482191	2249897	Eleonore	10	18	8	13.34
ERC5	481971	2249689	Eleonore	18	20	2	0.64
ERC5	481968	2249692	Eleonore	24	30	6	1.19
ERC6	481966	2249691	Eleonore	26	32	6	0.71
ERC7	482012	2249003	Eleonore	0	2	2	1.69
ERC8	482032	2248995	Eleonore	8	16	8	2.97
ERC9	482010	2249002	Eleonore	30	34	4	0.88
LCD1	476233	2245070	Lily	9	10	1	0.31
LCD1	476230	2245072	Lily	14	15	1	0.41
LCD1	476228	2245073	Lily	16	20	4	1.13
LCD1	476223	2245076	Lily	26	28	2	0.47
LCD1	476221	2245077	Lily	30	32	2	0.41
LCD2	476289	2245040	Lily	16	18	2	0.31
LCD2	476285	2245042	Lily	24	25	1	0.34
LCD2	476281	2245044	Lily	28	34	6	0.46
LCD2	476271	2245050	Lily	46	53	7	0.69
LCD2	476265	2245054	Lily	59	62	3	0.82
LCD2	476261	2245056	Lily	66	68	2	0.38
LCD2	476257	2245058	Lily	73	76	3	1.01
LCD2	476250	2245063	Lily	87	88	1	0.32
LCD2	476246	2245064	Lily	93	94	1	0.40
LCD2	476243	2245066	Lily	97	102	5	0.47
LCD2	476240	2245068	Lily	104	106	2	0.46
LCD2	476237	2245070	Lily	109	110	1	0.32
LCD2	476209	2245086	Lily	160	161	1	0.48
LCD3	476354	2245005	Lily	20	21	1	0.32
LCD3	476324	2245022	Lily	73	74	1	0.37
LCD3	476319	2245025	Lily	82	83	1	4.78
LCD3	476307	2245031	Lily	103	104	1	2.02
LCD3	476304	2245034	Lily	110	111	1	0.35
LCD3	476302	2245034	Lily	112	114	2	0.40

Hole Name	East	North	Zone	From	То	Length	Grade g/t Au
LCD3	476300	2245036	Lily	117	118	1	0.42
LCD3	476298	2245037	Lily	120	121	1	0.36
LCD3	476285	2245044	Lily	139	148	9	0.58
LCD4	476400	2245245	Lily	14	15	1	5.68
LCD4	476385	2245254	Lily	46	50	4	0.61
LCD4	476381	2245256	Lily	53	61	8	0.96
LCD4	476377	2245258	Lily	66	67	1	0.68
LCD4	476376	2245259	Lily	69	72	3	0.90
LCD4	476373	2245261	Lily	75	76	1	0.52
LCD4	476369	2245263	Lily	85	86	1	0.41
LCD4	476367	2245264	Lily	88	93	5	1.09
LCD4	476361	2245268	Lily	103	104	1	0.40
LCD4	476360	2245269	Lily	107	108	1	0.31
LCD4	476359	2245269	Lily	109	110	1	0.53
LCD4	476356	2245271	Lily	112	118	6	0.42
LCD4	476354	2245272	Lily	119	120	1	0.56
LCD4	476351	2245274	Lily	127	128	1	0.43
LCD5	476447	2245220	Lily	28	29	1	0.35
LCD5	476436	2245226	Lily	53	54	1	0.46
LCD5	476425	2245232	Lily	78	79	1	0.34
LCD5	476417	2245237	Lily	96	97	1	0.67
LCD5	476414	2245238	Lily	102	105	3	0.51
LCD5	476412	2245240	Lily	108	109	1	0.32
LCD5	476410	2245241	Lily	112	113	1	0.66
LCD5	476409	2245241	Lily	115	116	1	0.36
LCD5	476405	2245244	Lily	123	125	2	0.68
LCD5	476402	2245245	Lily	128	133	5	0.76
LCD5	476398	2245248	Lily	141	142	1	1.10
LCD5	476375	2245261	Lily	191	197	6	1.02
LCD5	476368	2245265	Lily	210	211	1	0.34
LCD5	476366	2245266	Lily	215	216	1	0.51
LCD5	476363	2245268	Lily	222	223	1	0.37
LCD5	476362	2245269	Lily	224	225	1	0.74
LCD5	476358	2245271	Lily	233	235	2	0.38
LCD5	476354	2245273	Lily	239	246	7	1.31
LCD5	476351	2245275	Lily	249	250	1	0.59
LCD6	476585	2245458	Lily	71	72	1	0.47
LCD6	476578	2245462	Lily	85	90	5	0.49
LCD6	476574	2245464	Lily	95	99	4	0.55

Hole Name	East	North	Zone	From	То	Length	Grade g/t Au
LCD6	476572	2245466	Lily	101	102	1	0.30
LCD6	476570	2245467	Lily	106	107	1	0.50
LCD6	476561	2245472	Lily	127	128	1	0.51
LCD6	476557	2245474	Lily	136	137	1	0.37
LCD6	476555	2245475	Lily	138	143	5	0.40
LCD6	476551	2245478	Lily	145	155	10	0.70
LCD6	476548	2245479	Lily	156	157	1	0.33
LCD6	476546	2245481	Lily	158	165	7	0.49
LCD6	476537	2245486	Lily	168	197	29	0.80
LCD6	476528	2245491	Lily	201	207	6	0.41
LCD6	476523	2245494	Lily	213	216	3	0.37
LCD6	476521	2245495	Lily	219	220	1	0.34
LCD6	476519	2245496	Lily	222	226	4	0.51
LCD6	476516	2245498	Lily	231	232	1	2.34
LCD6	476503	2245505	Lily	260	261	1	0.38
LRC1	476198	2245089	Lily	7	9	2	1.21
LRC11	476480	2245516	Lily	40	42	2	10.30
LRC11	476473	2245520	Lily	58	60	2	0.34
LRC12	476513	2245498	Lily	20	32	12	0.64
LRC12	476507	2245501	Lily	38	40	2	0.30
LRC12	476506	2245502	Lily	42	44	2	0.39
LRC12	476501	2245505	Lily	46	60	14	0.75
LRC12	476495	2245508	Lily	66	68	2	0.35
LRC13	476543	2245481	Lily	12	24	12	0.51
LRC13	476530	2245488	Lily	32	60	28	0.95
LRC14	476560	2245472	Lily	36	40	4	0.42
LRC14	476555	2245474	Lily	44	54	10	0.61
LRC15	476585	2245458	Lily	40	44	4	0.43
LRC15	476578	2245462	Lily	54	60	6	0.34
LRC17	476354	2245271	Lily	28	30	2	2.53
LRC17	476348	2245274	Lily	38	44	6	7.23
LRC18	476383	2245255	Lily	22	24	2	0.34
LRC18	476375	2245259	Lily	32	52	20	0.82
LRC19	476413	2245238	Lily	4	20	16	0.75
LRC19	476403	2245243	Lily	32	38	6	2.39
LRC19	476397	2245247	Lily	50	52	2	0.31
LRC19	476394	2245249	Lily	54	58	4	0.67
LRC2	476223	2245075	Lily	7	15	8	0.38
LRC2	476213	2245081	Lily	33	35	2	0.37

Hole Name	East	North	Zone	From	То	Length	Grade g/t Au
LRC20	476430	2245229	Lily	34	38	4	0.42
LRC20	476421	2245234	Lily	54	56	2	0.31
LRC25	475961	2244722	Lily	56	58	2	0.70
LRC3	476250	2245061	Lily	5	17	12	0.39
LRC3	476245	2245064	Lily	21	23	2	0.35
LRC3	476242	2245065	Lily	27	29	2	0.30
LRC3	476238	2245068	Lily	35	43	8	0.90
LRC3	476230	2245072	Lily	55	59	4	1.21
LRC4	476274	2245048	Lily	7	23	16	0.98
LRC4	476268	2245051	Lily	25	33	8	0.80
LRC4	476265	2245053	Lily	35	37	2	0.33
LRC4	476260	2245056	Lily	45	49	4	0.90
LRC4	476255	2245059	Lily	59	61	2	0.61
LRC5	476304	2245031	Lily	7	9	2	0.61
LRC5	476296	2245036	Lily	23	29	6	0.60
LRC5	476291	2245039	Lily	33	41	8	0.60
LRC5	476286	2245042	Lily	45	53	8	0.98
LRD18	476366	2245265	Lily	66	67.5	1.5	0.48
LRD18	476363	2245267	Lily	74	75	1	0.39
LRD18	476359	2245269	Lily	83	85	2	1.77
LRD18	476356	2245271	Lily	90	90.5	0.5	0.32
LRD18	476354	2245272	Lily	94.5	97	2.5	1.33
LRD18	476351	2245274	Lily	101	108.5	7.5	0.53
LRD18	476347	2245276	Lily	113	114.5	1.5	0.30
LRD18	476346	2245277	Lily	116	119	3	0.52
LRD5	476280	2245045	Lily	63	64.5	1.5	0.72
LRD5	476269	2245051	Lily	85	91.5	6.5	0.37
LRD5	476267	2245052	Lily	92.5	93.5	1	0.32
LRD5	476266	2245053	Lily	95.5	97.5	2	0.89
LRD5	476264	2245054	Lily	100	102	2	1.44
LRD5	476260	2245056	Lily	109	109.5	0.5	0.35
LRD5	476230	2245073	Lily	174	175.5	1.5	2.21
SCD1	475522	2248888	Sophie III	61	62	1	0.30
SCD1	475524	2248887	Sophie III	64	65	1	0.41
SCD1	475526	2248886	Sophie III	68	69	1	0.38
SCD1	475528	2248885	Sophie III	70	73	3	0.72
SCD1	475535	2248881	Sophie III	80	89	9	0.65
SCD1	475540	2248877	Sophie III	90	98	8	0.49
SCD1	475546	2248874	Sophie III	99	109	10	0.38

Hole Name	East	North	Zone	From	То	Length	Grade g/t Au
SCD1	475557	2248868	Sophie III	122	125	3	0.40
SCD1	475560	2248866	Sophie III	129	132	3	0.65
SCD1	475564	2248864	Sophie III	136	137	1	0.49
SCD1	475567	2248862	Sophie III	141	143	2	1.27
SCD3	475629	2252398	Sophie I	34	35	1	0.30
SCD3	475584	2252424	Sophie I	112	119	7	0.75
SCD4	475578	2252222	Sophie I	15	16	1	2.90
SCD4	475567	2252228	Sophie I	34	35	1	0.88
SCD4	475532	2252249	Sophie I	98	99	1	0.50
SCD5	475798	2251466	Sohie II	96	97	1	0.38
SCD5	475795	2251468	Sohie II	101	104	3	0.80
SCD5	475757	2251490	Sohie II	170	173	3	0.83
SCD5	475752	2251493	Sohie II	180	181	1	0.32
SCD6	474733	2251779	Sophie I	26	28	2	2.24
SCD6	474730	2251780	Sophie I	32	33	1	3.04
SCD6	474715	2251789	Sophie I	68	69	1	0.41
SCD6	474708	2251793	Sophie I	83	84	1	0.35
SCD7	475464	2250659	Sophie II	35	36	1	0.35
SCD7	475474	2250663	Sophie II	52	53	1	2.09
SCD7	475479	2250665	Sophie II	56	64	8	0.92
SCD7	475482	2250666	Sophie II	65	66	1	0.48
SCD7	475492	2250670	Sophie II	80	83	3	0.97
SCD8	475509	2250974	Sophie II	17	20	3	0.58
SCD8	475501	2250978	Sophie II	29	35	6	0.74
SCD8	475499	2250980	Sophie II	36	37	1	1.49
SCD8	475496	2250982	Sophie II	42	43	1	0.35
SCD9	475540	2250956	Sophie II	56	57	1	0.56
SCD9	475537	2250958	Sophie II	59	66	7	1.29
SCD9	475533	2250960	Sophie II	69	70	1	0.35
SCD9	475527	2250964	Sophie II	80	81	1	0.33
SCD9	475517	2250970	Sophie II	98	101	3	3.06
SCD9	475512	2250973	Sophie II	108	109	1	4.10
SRC10	475732	2251366	Sophie II	2	8	6	1.74
SRC10	475740	2251361	Sophie II	16	24	8	7.95
SRC11	475731	2251370	Sophie II	0	6	6	1.18
SRC13	475739	2251366	Sophie II	48	50	2	1.31
SRC14	475469	2250997	Sophie II	12	16	4	0.72
SRC14	475465	2251000	Sophie II	20	24	4	3.03
SRC15	475478	2250992	Sophie II	40	48	8	1.96

Hole Name	East	North	Zone	From	То	Length	Grade g/t Au
SRC16	475511	2250973	Sophie II	30	34	4	0.49
SRC16	475506	2250976	Sophie II	38	46	8	0.92
SRC16	475502	2250978	Sophie II	48	50	2	0.34
SRC16	475497	2250981	Sophie II	54	60	6	0.76
SRC17	475540	2250956	Sophie II	26	28	2	0.51
SRC17	475530	2250962	Sophie II	44	46	2	1.18
SRC17	475523	2250966	Sophie II	56	60	4	5.03
SRC18	475568	2250940	Sophie II	22	24	2	0.60
SRC18	475557	2250947	Sophie II	42	44	2	0.40
SRC2	475317	2248592	Sophie III	14	40	26	0.53
SRC2	475325	2248588	Sophie III	44	46	2	0.39
SRC2	475328	2248586	Sophie III	50	54	4	0.57
SRC2	475331	2248584	Sophie III	58	60	2	0.37
SRC20	475603	2250920	Sophie II	68	70	2	0.36
SRC21	475654	2250913	Sophie II	28	30	2	0.52
SRC21	475611	2250920	Sophie II	92	102	10	1.54
SRC21	475597	2250923	Sophie II	118	120	2	2.46
SRC22	475660	2250968	Sophie II	12	24	12	0.74
SRC22	475648	2250979	Sophie II	38	48	10	0.83
SRC24	475475	2250665	Sophie II	38	40	2	0.43
SRC24	475486	2250668	Sophie II	56	58	2	24.90
SRC24	475494	2250671	Sophie II	68	70	2	2.80
SRC25	475544	2250700	Sophie II	14	16	2	0.39
SRC25	475556	2250709	Sophie II	20	58	38	0.82
SRC25	475571	2250719	Sophie II	62	70	8	2.83
SRC25	475579	2250725	Sophie II	82	84	2	0.32
SRC25	475587	2250731	Sophie II	94	100	6	3.30
SRC26	475392	2248733	Sophie III	8	10	2	0.39
SRC26	475400	2248728	Sophie III	20	28	8	0.44
SRC26	475412	2248722	Sophie III	42	48	6	0.42
SRC26	475417	2248719	Sophie III	52	54	2	0.30
SRC27	475379	2248741	Sophie III	32	34	2	0.95
SRC27	475388	2248736	Sophie III	48	50	2	0.40
SRC29	475580	2248854	Sophie III	30	32	2	0.52
SRC3	475289	2248609	Sophie III	20	24	4	0.40
SRC3	475296	2248606	Sophie III	36	38	2	0.43
SRC3	475300	2248603	Sophie III	46	48	2	0.39
SRC3	475305	2248601	Sophie III	56	58	2	0.31
SRC30	475541	2248876	Sophie III	6	10	4	0.61

Hole Name	East	North	Zone	From	То	Length	Grade g/t Au
SRC30	475559	2248865	Sophie III	40	42	2	0.73
SRC31	475528	2248883	Sophie III	26	42	16	0.64
SRC31	475542	2248874	Sophie III	58	60	2	0.57
SRC36	475653	2248988	Sophie III	18	26	8	0.47
SRC37	475641	2248995	Sophie III	44	50	6	0.51
SRC37	475647	2248991	Sophie III	56	60	4	0.67
SRC38	475696	2248963	Sophie III	50	52	2	0.49
SRC39	475650	2248988	Sophie III	68	80	12	0.77
SRC4	475281	2248615	Sophie III	60	64	4	0.51
SRC41	475630	2249002	Sophie III	72	74	2	0.30
SRC41	475635	2248998	Sophie III	82	84	2	0.30
SRC43	475539	2248878	Sophie III	22	32	10	1.30
SRC43	475532	2248881	Sophie III	36	40	4	0.57
SRC43	475526	2248885	Sophie III	44	54	10	0.47
SRC44	475327	2248588	Sophie III	32	42	10	0.48
SRC44	475321	2248592	Sophie III	44	62	18	0.54
SRC44	475313	2248597	Sophie III	70	72	2	1.94
SRC44	475308	2248599	Sophie III	80	82	2	0.45
SRC44	475299	2248605	Sophie III	102	104	2	1.21
SRC44	475285	2248613	Sophie III	132	138	6	0.47
SRC46	475609	2252404	Sophie I	38	44	6	1.35
SRC47	475595	2252411	Sophie I	10	14	4	9.63
SRC47	475591	2252414	Sophie I	20	26	6	0.65
SRC50	475577	2248854	Sophie III	11	13	2	0.40
SRC50	475572	2248857	Sophie III	23	25	2	0.51
SRC50	475561	2248863	Sophie III	47	49	2	0.32
SRC50	475558	2248865	Sophie III	55	57	2	0.80
SRC50	475544	2248873	Sophie III	87	89	2	0.35
SRC50	475537	2248876	Sophie III	99	107	8	0.68
SRC50	475527	2248882	Sophie III	123	131	8	0.78
SRC50	475523	2248885	Sophie III	135	137	2	0.43
SRC50	475518	2248888	Sophie III	145	151	6	0.64
SRC50	475515	2248890	Sophie III	155	157	2	0.36
SRC50	475507	2248894	Sophie III	165	181	16	0.62
SRC50	475502	2248897	Sophie III	185	187	2	0.83
SRC50	475493	2248902	Sophie III	205	207	2	0.39
SRC53	475758	2251356	Sophie II	67	71	4	1.48
SRC53	475751	2251359	Sophie II	79	87	8	2.00
SRC56	475570	2250718	Sophie II	49	57	8	0.96

Hole Name	East	North	Zone	From	То	Length	Grade g/t Au
SRC57	475574	2250706	Sophie II	19	45	26	1.43
SRC60	475906	2252074	Sophie II	35	49	14	0.66
SRC62	475929	2251715	Sophie II	27	31	4	0.72
SRC62	475924	2251718	Sophie II	37	43	6	1.31
SRC63	475966	2251694	Sophie II	3	7	4	0.52
SRC63	475959	2251698	Sophie II	19	21	2	0.63
SRC63	475952	2251702	Sophie II	35	39	4	1.06
SRC64	475980	2251687	Sophie II	33	35	2	0.35
SRC64	475970	2251692	Sophie II	55	57	2	1.10
SRC67	475805	2251562	Sophie II	0	5	5	0.83
SRC68	475815	2251557	Sophie II	31	49	18	1.28
SRC69	475827	2251551	Sophie II	70	74	4	0.56
SRC75	475589	2251189	Sophie II	82	84	2	0.31
SRC76	475655	2251155	Sophie II	12	20	8	1.21
SRC77	475671	2251145	Sophie II	36	38	2	0.70
SRC77	475664	2251149	Sophie II	52	56	4	1.29
SRC77	475658	2251153	Sophie II	64	70	6	2.08
SRC78	475676	2251142	Sophie II	86	88	2	1.78
SRC8	475418	2248718	Sophie III	10	12	2	0.33
SRC8	475422	2248716	Sophie III	16	26	10	0.47
SRC81	475528	2252244	Sophie I	46	52	6	4.03
SRC82	475562	2252224	Sophie I	26	30	4	0.68
SRC83	475597	2252205	Sophie I	8	10	2	1.63
SRC83	475587	2252210	Sophie I	30	32	2	2.76
SRC83	475575	2252217	Sophie I	58	60	2	1.57
SRC84	475608	2252199	Sophie I	44	46	2	0.68
SRC84	475605	2252200	Sophie I	50	52	2	0.39
SRC86	475544	2251856	Sophie I	2	4	2	0.79
SRD19	475561	2250945	Sophie II	82.1	83.5	1.4	1.25
SRD19	475557	2250948	Sophie II	89.3	92.5	3.2	0.95
SRD19	475555	2250949	Sophie II	94	95.5	1.5	2.04
SRD19	475550	2250952	Sophie II	103	103.75	0.75	0.30
SRD19	475543	2250956	Sophie II	116	116.9	0.9	0.44
SRD63	475940	2251710	Sophie II	65.55	66	0.45	2.73
SRD63	475937	2251712	Sophie II	72	73	1	0.96
SRD70	475837	2251547	Sophie II	110.5	113	2.5	0.39
SRD70	475836	2251547	Sophie II	114	115	1	0.91
SRD70	475835	2251548	Sophie II	117.1	117.5	0.4	0.41
SRD70	475833	2251549	Sophie II	122	122.5	0.5	0.31

Hole Name	East	North	Zone	From	То	Length	Grade g/t Au
SRD70	475832	2251550	Sophie II	123.5	125	1.5	0.91
T16DD001m	482216	2249894	Eleonore	23.8	24.6	0.8	1.02
T16DD001m	482201	2249891	Eleonore	50	50.8	0.8	1.27
T16DD001m	482197	2249890	Eleonore	56.5	58	1.5	0.47
T16DD001m	482193	2249889	Eleonore	63.35	64.85	1.5	0.31
T16DD005m	476546	2245468	Lily	29.7	31.2	1.5	0.44
T16DD005m	476545	2245469	Lily	32.7	34.2	1.5	1.58
T16DD005m	476542	2245470	Lily	38.3	39.8	1.5	0.31
T16DD005m	476539	2245472	Lily	41.3	50.3	9	0.59
T16DD005m	476534	2245475	Lily	54.8	56.3	1.5	0.64
T16DD005m	476526	2245480	Lily	65.35	75.85	10.5	0.99
T16DD005m	476522	2245482	Lily	77.35	78.85	1.5	0.50
T16DD005m	476520	2245483	Lily	81.85	84.85	3	0.73
T16DD005m	476513	2245488	Lily	93.85	101	7.15	0.75
T16DD005m	476502	2245495	Lily	117.5	120.85	3.35	0.35
T16DD007m	475552	2252232	Sophie I	1.5	4.5	3	0.76
T16DD009	475524	2250715	Sophie II	85.75	87.7	1.95	2.08
T16DD009	475522	2250719	Sophie II	93	94.57	1.57	3.20
T16DD009	475520	2250723	Sophie II	100.5	101.5	1	0.81
T16DD009	475517	2250727	Sophie II	108.15	108.45	0.3	0.57
T16DD009	475515	2250731	Sophie II	116.02	116.65	0.63	0.74
T16DD010	482515	2250792	Eleonore	21.6	22.1	0.5	0.70
T16DD010	482509	2250796	Eleonore	31.8	33.3	1.5	0.86
T16DD010	482496	2250803	Eleonore	54.5	55.5	1	6.06
T16DD010	482488	2250808	Eleonore	69.5	70	0.5	0.86
T16DD010	482485	2250810	Eleonore	75.03	75.45	0.42	0.33
T16DD011	481928	2249625	Eleonore	20.66	23.21	2.55	0.77
T16DD011	481921	2249629	Eleonore	33.7	34.1	0.4	0.32
T16DD011	481912	2249634	Eleonore	49.85	50.3	0.45	3.35
T16DD012	482277	2249852	Eleonore	0	1.5	1.5	1.79
T16DD012	482266	2249858	Eleonore	19.46	20.33	0.87	0.43
T16DD012	482254	2249865	Eleonore	40.95	41.4	0.45	0.56
T16DD012	482253	2249866	Eleonore	43.57	44.15	0.58	0.47
T16DD012	482250	2249867	Eleonore	46.15	51	4.85	0.91
T16DD012	482246	2249869	Eleonore	53	58.53	5.53	1.15
T16DD012	482243	2249871	Eleonore	61.74	62.74	1	0.86
T16DD013	482309	2250557	Eleonore	29.4	30.1	0.7	0.51
T16DD013	482306	2250559	Eleonore	32.1	36	3.9	1.09
T16DD013	482297	2250564	Eleonore	48.1	52.75	4.65	3.24

Hole Name	East	North	Zone	From	То	Length	Grade g/t Au
T16DD014	474767	2251861	Sophie I	27.5	28.25	0.75	0.48
T16DD014	474752	2251870	Sophie I	54.62	55.2	0.58	1.59
T16DD014	474741	2251877	Sophie I	73	73.55	0.55	0.35
T16DD014	474723	2251887	Sophie I	103.15	103.85	0.7	0.52
T16DD014	474720	2251890	Sophie I	108.24	111	2.76	0.31
T16DD014	474716	2251892	Sophie I	116.15	116.46	0.31	1.13
T16RC001	474775	2251746	Sophie I	42	48	6	1.25
T16RC001	474759	2251755	Sophie I	70	72	2	0.61
T16RC001	474754	2251758	Sophie I	77	83	6	0.64
T16RC001	474727	2251773	Sophie I	129	132	3	1.35
T16RC002	474668	2251547	Sophie I	78	79	1	0.34
T16RC004	475574	2252153	Sophie I	16	18	2	0.65
T16RC004	475557	2252159	Sophie I	44	46	2	0.79
T16RC005	475625	2252458	Sophie I	52	54	2	0.40
T16RC005	475610	2252463	Sophie I	78	80	2	0.84
T16RC005	475604	2252465	Sophie I	89	90	1	0.37
T16RC005	475603	2252466	Sophie I	91	95	4	1.92
T16RC006	476141	2252700	Sophie I	38	39	1	0.34
T16RC008	475912	2252103	Sophie II	32	34	2	0.30
T16RC009	475970	2251746	Sophie II	44	48	4	0.81
T16RC009	475965	2251748	Sophie II	53	54	1	0.39
T16RC010	475924	2251647	Sophie II	50	51	1	0.36
T16RC010	475916	2251651	Sophie II	63	64	1	0.41
T16RC013	475713	2251085	Sophie II	88	92	4	0.49
T16RC013	475704	2251091	Sophie II	106	108	2	0.43
T16RC013	475673	2251109	Sophie II	164	168	4	1.92
T16RC014	475706	2250949	Sophie II	110	114	4	0.50
T16RC015	475606	2250872	Sophie II	122	124	2	1.70
T16RC016	475484	2250897	Sophie II	90	92	2	0.31
T16RC019	475528	2250662	Sophie II	52	56	4	0.41
T16RC019	475508	2250697	Sophie II	117	120	3	5.95
T16RC019	475504	2250703	Sophie II	130	132	2	0.54
T16RC020	475650	2250677	Sophie II	8	10	2	0.40
T16RC020	475640	2250693	Sophie II	36	38	2	0.50
T16RC020	475638	2250697	Sophie II	44	46	2	0.31
T16RC020	475632	2250707	Sophie II	62	64	2	0.48
T16RC020	475609	2250749	Sophie II	136	147	11	1.53
T16RC021	475546	2250954	Sophie II	26	28	2	0.63
T16RC021	475534	2250962	Sophie II	48	49	1	0.37

Hole Name	East	North	Zone	From	То	Length	Grade g/t Au
T16RC021	475532	2250964	Sophie II	51	53	2	1.96
T16RC021	475527	2250967	Sophie II	60	62	2	0.62
T16RC021	475523	2250970	Sophie II	67	69	2	2.92
T16RC021	475519	2250973	Sophie II	72	80	8	1.10
T16RC021	475513	2250977	Sophie II	85	88	3	0.51
T16RC021	475508	2250980	Sophie II	93	100	7	1.19
T16RC023	482536	2250930	Eleonore	18	19	1	1.08
T16RC024	482457	2250772	Eleonore	28	31	3	2.17
T16RC025	482221	2249969	Eleonore	78	81	3	0.48
T16RC025	482214	2249973	Eleonore	94	96	2	0.49
T16RC027	481581	2248716	Eleonore	38	39	1	1.05
T16RC027	481571	2248723	Eleonore	57	58	1	0.99
T16RC027	481562	2248728	Eleonore	74	75	1	0.41
T16RC027	481556	2248732	Eleonore	84	90	6	24.40
T16RC027	481542	2248740	Eleonore	116	117	1	0.41
T16RC028	481670	2248708	Eleonore	56	59	3	0.60
T16RC028	481667	2248709	Eleonore	62	63	1	0.34
T16RC029	481730	2248859	Eleonore	86	87	1	0.40
T16RC029	481715	2248867	Eleonore	112	113	1	1.00
T16RC029	481708	2248872	Eleonore	125	127	2	1.60
T16RC030	482040	2248913	Eleonore	2	4	2	0.49
T16RC030	482035	2248916	Eleonore	12	13	1	0.55
T16RC030	482011	2248930	Eleonore	54	56	2	4.51
T16RC030	481998	2248937	Eleonore	77	78	1	0.40
T16RC031	482277	2249978	Eleonore	20	21	1	0.94
T16RC032	482211	2249888	Eleonore	9	10	1	0.64
T16RC032	482201	2249894	Eleonore	25	30	5	10.96
T16RC033	482290	2249846	Eleonore	134	135	1	0.56
T16RC034	482248	2249768	Eleonore	55	56	1	0.53
T16RC034	482227	2249782	Eleonore	96	97	1	2.45
T16RC034	482223	2249785	Eleonore	104	105	1	0.48
T16RC034	482220	2249787	Eleonore	110	111	1	0.37
T16RC034	482218	2249787	Eleonore	112	114	2	2.03
T16RC035	482197	2249793	Eleonore	0	2	2	1.55
T16RC035	482170	2249810	Eleonore	45	52	7	5.29
T16RC035	482166	2249813	Eleonore	54	58	4	1.21
T16RC035	482147	2249824	Eleonore	87	91	4	0.74
T16RC036	481985	2249741	Eleonore	51	52	1	2.40
T16RC036	481974	2249748	Eleonore	69	72	3	1.98

Hole Name	East	North	Zone	From	То	Length	Grade g/t Au
T16RC037	482096	2249759	Eleonore	44	48	4	2.18
T16RC038	482010	2249809	Eleonore	70	71	1	0.56
T16RC039	481956	2249610	Eleonore	48	50	2	0.59
T16RC039	481951	2249613	Eleonore	57	59	2	0.41
T16RC039	481920	2249632	Eleonore	116	118	2	1.29
T16RC040	481837	2249584	Eleonore	112	118	6	0.39
T16RC040	481833	2249587	Eleonore	123	124	1	1.34
T16RC041	482113	2249100	Eleonore	14	15	1	0.53
T16RC041	482109	2249102	Eleonore	20	22	2	0.32
T16RC041	482079	2249120	Eleonore	76	78	2	0.61
T16RC041	482063	2249129	Eleonore	104	108	4	0.68
T16RC042	481989	2249080	Eleonore	48	50	2	0.46
T16RC042	481984	2249083	Eleonore	58	60	2	0.42
T16RC042	481981	2249085	Eleonore	64	66	2	0.38
T16RC042	481976	2249088	Eleonore	73	78	5	1.19
T16RC042	481960	2249097	Eleonore	106	110	4	1.22
T16RC044	482387	2250516	Eleonore	30	31	1	0.39
T16RC044	482364	2250530	Eleonore	69	71	2	1.39
T16RC044	482351	2250538	Eleonore	93	94	1	0.66
T16RC044	482344	2250542	Eleonore	104	106	2	1.51
T16RC045	482320	2250556	Eleonore	49	50	1	0.46
T16RC045	482318	2250557	Eleonore	53	54	1	0.47
T16RC045	482316	2250558	Eleonore	55	60	5	7.45
T16RC045	482306	2250564	Eleonore	74	76	2	0.37
T16RC045	482288	2250575	Eleonore	108	110	2	0.30
T16RC046	482275	2250580	Eleonore	11	13	2	0.77
T16RC046	482247	2250597	Eleonore	62	64	2	0.57
T16RC052	476776	2245582	Lily	6	8	2	1.24
T16RC052	476755	2245595	Lily	44	46	2	0.42
T16RC052	476748	2245599	Lily	53	62	9	0.80
T16RC052	476744	2245602	Lily	64	66	2	0.47
T16RC052	476742	2245603	Lily	69	70	1	0.59
T16RC052	476731	2245610	Lily	86	92	6	0.37
T16RC052	476726	2245613	Lily	95	102	7	1.33
T16RC054	477366	2246398	Lily	41	42	1	0.43
T16RC056	472802	2245403	Sophie III	59	60	1	0.40
T16RC059	475590	2250843	Sophie II	40	42	2	0.46
T16RC059	475578	2250851	Sophie II	62	65	3	1.51
T16RC061	474821	2251835	Sophie I	16	17	1	0.92

Hole Name	East	North	Zone	From	То	Length	Grade g/t Au
T16RC061	474810	2251842	Sophie I	36	38	2	0.45
T16RC061	474780	2251860	Sophie I	90	91	1	1.11
T16RC061	474755	2251875	Sophie I	137	138	1	0.56
T16RC062	475661	2252543	Sophie I	6	8	2	1.85
T16RC062	475641	2252546	Sophie I	36	38	2	0.46
T16RC062	475612	2252549	Sophie I	83	87	4	0.98
T16RC062	475608	2252550	Sophie I	91	92	1	0.97
T16RC062	475598	2252551	Sophie I	108	109	1	0.67
T16RC065	475819	2251626	Sophie II	8	13	5	0.44
T16RC065	475801	2251636	Sophie II	38	46	8	1.05
T16RC065	475797	2251639	Sophie II	50	51	1	0.43
T16RC065	475780	2251648	Sophie II	76	86	10	1.30
T16RC069	482524	2250730	Eleonore	46	47	1	1.60
T16RC069	482483	2250755	Eleonore	126	128	2	0.43
T16RC069	482476	2250760	Eleonore	141	144	3	2.03
T16RC070	482419	2250682	Eleonore	30	32	2	1.21
T16RC070	482391	2250700	Eleonore	83	86	3	76.44
T16RC070	482385	2250704	Eleonore	96	98	2	0.46
T16RC071	482475	2250875	Eleonore	52	58	6	33.37
T16RC072	482413	2250743	Eleonore	85	89	4	1.93
T16RC072	482406	2250747	Eleonore	100	102	2	1.94
T16RC073	482205	2249740	Eleonore	20	21	1	0.76
T16RC073	482170	2249761	Eleonore	81	87	6	0.37
T16RC073	482116	2249795	Eleonore	192	193	1	0.40
T16RC074	481996	2249681	Eleonore	83	84	1	1.15
T16RC074	481963	2249699	Eleonore	142	144	2	0.45
T16RC075	481834	2248891	Eleonore	40	42	2	0.31
T16RC076	481656	2248994	Eleonore	38	40	2	0.35
T16RC076	481652	2248996	Eleonore	44	46	2	0.69
T16RC076	481649	2248998	Eleonore	51	52	1	0.31
T16RC077	481556	2248638	Eleonore	28	30	2	0.43
T16RC077	481553	2248640	Eleonore	34	36	2	0.32
T16RC077	481538	2248648	Eleonore	60	64	4	0.74
T16RC077	481513	2248662	Eleonore	108	109	1	0.44
T16RC077	481510	2248664	Eleonore	114	115	1	0.37
T16RC077	481509	2248665	Eleonore	116	117	1	0.38
T16RC078	481495	2248675	Eleonore	38	42	4	0.49
T16RC078	481474	2248688	Eleonore	78	80	2	0.37
T16RC078	481469	2248691	Eleonore	88	90	2	0.48

Hole Name	East	North	Zone	From	То	Length	Grade g/t Au
T16RC079	481714	2248962	Eleonore	34	38	4	1.80
T16RC079	481680	2248982	Eleonore	101	103	2	1.83
T16RC081	481660	2248666	Eleonore	5	7	2	1.97
T16RC081	481643	2248676	Eleonore	37	38	1	0.88
T16RC081	481628	2248686	Eleonore	66	67	1	0.46
T16RC081	481601	2248702	Eleonore	120	121	1	0.45
T16RC081	481595	2248706	Eleonore	130	132	2	1.19
T16RC081	481585	2248712	Eleonore	151	152	1	0.30
T16RC086	482277	2250649	Eleonore	10	12	2	0.36
T16RC086	482240	2250663	Eleonore	72	74	2	1.94
T16RC087	482356	2250626	Eleonore	15	16	1	0.51
T16RC087	482354	2250626	Eleonore	17	19	2	0.98
T16RC087	482345	2250630	Eleonore	32	34	2	0.79
T16RC087	482339	2250632	Eleonore	42	43	1	1.63
T16RC087	482336	2250633	Eleonore	48	49	1	0.32
T16RC088	482389	2250615	Eleonore	74	86	12	0.43
T16RC088	482375	2250620	Eleonore	102	103	1	1.43
T16RC089	482331	2250423	Eleonore	63	65	2	0.76
T16RC090	482295	2250438	Eleonore	6	8	2	0.40
T16RC090	482236	2250459	Eleonore	104	105	1	0.31
T16RC090	482232	2250461	Eleonore	110	112	2	0.54
T16RC091	482193	2250477	Eleonore	53	54	1	0.30
T16RC091	482182	2250482	Eleonore	72	73	1	0.45
T16RC091	482181	2250483	Eleonore	74	77	3	0.57
T16RC092	482780	2251085	Eleonore	28	31	3	2.41
T16RC093	482620	2251000	Eleonore	76	77	1	0.40
T16RC097	482302	2250028	Eleonore	29	30	1	0.38
T16RC097	482294	2250032	Eleonore	42	44	2	0.66
T16RC098	482544	2250832	Eleonore	80	82	2	1.19
T16RC098	482488	2250867	Eleonore	192	193	1	0.52
T16RC099	482373	2250708	Eleonore	53	58	5	2.93
T16RC100	482335	2250004	Eleonore	92	96	4	0.90
T16RC100	482328	2250009	Eleonore	106	109	3	0.54
T16RC101	482069	2249694	Eleonore	24	25	1	0.45
T16RC101	482047	2249706	Eleonore	62	67	5	0.83
T16RC102	482125	2249661	Eleonore	48	49	1	0.45
T16RC102	482109	2249670	Eleonore	75	76	1	0.39
T16RC102	482105	2249672	Eleonore	82	84	2	0.50
T16RC102	482083	2249685	Eleonore	123	125	2	0.48

Hole Name	East	North	Zone	From	То	Length	Grade g/t Au
T16RC103	482114	2249218	Eleonore	98	99	1	0.80
T16RC104	481952	2248966	Eleonore	35	36	1	0.30
T16RC104	481946	2248969	Eleonore	46	47	1	1.01
T16RC104	481909	2248992	Eleonore	115	118	3	4.25
T16RC104	481905	2248995	Eleonore	124	126	2	2.01
T16RC105	481888	2248861	Eleonore	56	57	1	1.23
T16RC107	481732	2248679	Eleonore	79	82	3	2.54
T16RC107	481724	2248683	Eleonore	94	96	2	0.69
T16RC107	481682	2248709	Eleonore	178	180	2	0.32
T16RC107	481677	2248713	Eleonore	186	192	6	1.68
T16RC107	481673	2248716	Eleonore	198	200	2	1.94
T16RC107	481669	2248718	Eleonore	205	206	1	0.45
T16RC108	482031	2249263	Eleonore	122	124	2	0.36
T16RC109	482038	2249151	Eleonore	30	37	7	1.14
T16RC109	482034	2249154	Eleonore	40	44	4	0.55
T16RC109	482027	2249158	Eleonore	54	56	2	0.40
T16RC110	481595	2248876	Eleonore	29	32	3	0.60
T16RC110	481575	2248876	Eleonore	61	63	2	0.40
T16RC110	481573	2248876	Eleonore	66	67	1	1.02
T16RC111	481548	2248735	Eleonore	44	46	2	0.50
T16RC111	481545	2248737	Eleonore	50	52	2	1.21
T16RC111	481540	2248740	Eleonore	58	60	2	0.65
T16RC113	476827	2245779	Lily	62	66	4	0.47
T16RC113	476821	2245783	Lily	74	75	1	0.64
T16RC114	482478	2250645	Eleonore	42	48	6	0.38
T16RC114	482453	2250660	Eleonore	90	92	2	0.86
T16RC114	482415	2250683	Eleonore	160	161	1	0.31
T16RC114	482403	2250691	Eleonore	184	185	1	0.35
T16RC114	482397	2250695	Eleonore	196	198	2	1.44
T16RC116	482150	2249725	Eleonore	60	62	2	0.55
T16RC116	482137	2249732	Eleonore	84	85	1	0.80
T16RC116	482131	2249736	Eleonore	94	98	4	1.31
T16RC116	482118	2249743	Eleonore	119	122	3	0.39
T16RC117	482114	2249283	Eleonore	20	25	5	0.51
T16RC117	482093	2249295	Eleonore	58	60	2	0.30
T16RC119	482282	2249887	Eleonore	26	34	8	1.66
T16RC119	482273	2249892	Eleonore	42	50	8	0.58
T16RC119	482219	2249927	Eleonore	145	147	2	0.54
T16RC119	482210	2249932	Eleonore	162	163	1	0.32

Hole Name	East	North	Zone	From	То	Length	Grade g/t Au
T16RC120	482337	2249897	Eleonore	50	53	3	2.78
T16RC121	482178	2249849	Eleonore	18	19	1	2.02
T16RC122	475784	2251475	Sophie II	44	45	1	0.32
T16RC123	475817	2251707	Sophie II	140	143	3	2.02
T16RC124	475812	2251723	Sophie II	38	39	1	0.37
T16RC124	475810	2251725	Sophie II	43	44	1	1.64
T16RC124	475799	2251733	Sophie II	62	66	4	0.49
T16RC125	475653	2252299	Sophie I	16	18	2	2.95
T16RC125	475599	2252315	Sophie I	108	114	6	0.60
T16RC125	475590	2252317	Sophie I	128	129	1	0.30
T16RC126	474762	2251987	Sophie I	106	107	1	1.19
T16RC127	482290	2250333	Eleonore	79	81	2	2.59
T16RC127	482283	2250335	Eleonore	92	94	2	2.43
T16RC128	482184	2250371	Eleonore	120	122	2	1.21
T16RC129	482151	2250382	Eleonore	56	57	1	0.50
T16RC130	482788	2251057	Eleonore	43	44	1	0.90
T16RC130	482784	2251067	Eleonore	58	63	5	0.48
T16RC131	482069	2249039	Eleonore	158	159	1	10.45
T16RC131	482064	2249042	Eleonore	170	172	2	0.45
T16RC132	482061	2248902	Eleonore	51	52	1	0.42
T16RC132	482014	2248929	Eleonore	145	147	2	0.80
T16RC133	481552	2248641	Eleonore	118	121	3	2.79
T16RC134	481641	2248588	Eleonore	59	61	2	3.02
T16RC134	481614	2248605	Eleonore	114	115	1	1.57
T16RC136	482694	2251022	Eleonore	75	79	4	7.69
T16RC136	482674	2251067	Eleonore	160	162	2	0.59
T16RC137	482452	2250563	Eleonore	17	18	1	1.07
T16RC137	482403	2250593	Eleonore	108	113	5	1.16
T16RC137	482396	2250598	Eleonore	125	128	3	4.70
T16RC138	481126	2248652	Eleonore	38	40	2	0.92
T16RC138	481123	2248654	Eleonore	43	46	3	1.87
T16RC138	481096	2248671	Eleonore	92	93	1	0.37
T16RC139	481544	2248544	Eleonore	62	63	1	2.16
T16RC139	481535	2248546	Eleonore	73	79	6	3.29
T16RC139	481506	2248553	Eleonore	124	125	1	2.30
T16RC140	481655	2248521	Eleonore	0	2	2	0.44
T16RC140	481643	2248523	Eleonore	20	21	1	0.86
T16RC140	481639	2248524	Eleonore	26	27	1	0.39
T16RC140	481638	2248524	Eleonore	28	30	2	6.63

Hole Name	East	North	Zone	From	То	Length	Grade g/t Au
T16RC140	481608	2248530	Eleonore	77	80	3	0.59
T16RC143	475444	2249699	Sophie II	48	54	6	0.75
T16RC145	481889	2249006	Eleonore	45	48	3	0.89
T16RC147	481562	2248436	Eleonore	20	22	2	0.50
T16RC147	481528	2248437	Eleonore	72	73	1	0.57
T16RC147	481517	2248438	Eleonore	89	90	1	0.40
T16RC147	481516	2248438	Eleonore	91	92	1	0.33
T16RC147	481515	2248438	Eleonore	93	94	1	0.38
T16RC147	481513	2248438	Eleonore	95	96	1	1.54
T16RC148	481496	2248451	Eleonore	30	32	2	0.42
T16RC148	481491	2248452	Eleonore	37	42	5	0.78
T16RC150	481494	2248348	Eleonore	105	108	3	1.42
T16RD026	482294	2249977	Eleonore	146.4	147.35	0.95	1.51
T16RD026	482288	2249981	Eleonore	160	160.43	0.43	10.55
T16RD026	482283	2249985	Eleonore	170.85	171.87	1.02	0.76
T16RD026	482277	2249989	Eleonore	186.05	186.55	0.5	0.30
T16RD026	482264	2249999	Eleonore	217.4	217.9	0.5	0.62
T16RD030	481954	2248962	Eleonore	157	157.7	0.7	4.20
T16RD030	481938	2248971	Eleonore	185.93	186.46	0.53	0.31
T16RD034	482183	2249810	Eleonore	177.69	178.2	0.51	0.83
T16RD041	482035	2249147	Eleonore	162	162.5	0.5	2.22
T16RD041	482032	2249148	Eleonore	166	167	1	36.09
T16RD041	482028	2249151	Eleonore	175.25	176.5	1.25	5.68
T16RD044	482315	2250561	Eleonore	156.1	156.53	0.43	0.34
T16RD044	482313	2250562	Eleonore	159	159.5	0.5	0.72
T16RD044	482308	2250565	Eleonore	166.6	169	2.4	0.64
T16RD080	481730	2248951	Eleonore	126.7	127.7	1	0.38
T16RD080	481711	2248962	Eleonore	161.85	165.9	4.05	0.40
T16RD080	481702	2248968	Eleonore	182	183	1	0.38
T16RD080	481693	2248974	Eleonore	196.25	203.55	7.3	1.44
T16RD080	481678	2248983	Eleonore	228.5	229.8	1.3	0.85
T16RD081	481556	2248729	Eleonore	209.88	211	1.12	0.45
T16RD101	482009	2249728	Eleonore	138	139.5	1.5	4.59
T16RD101	482000	2249732	Eleonore	154.5	155	0.5	0.41
T16RD101	481999	2249733	Eleonore	156.5	157	0.5	18.10
T16RD101	481985	2249741	Eleonore	184	184.5	0.5	0.90
T16RD101	481971	2249748	Eleonore	212	212.5	0.5	2.09
T16RD140	481583	2248536	Eleonore	121.5	122	0.5	0.35
T16RD140	481577	2248537	Eleonore	129.5	132.8	3.3	2.05

Hole Name	East	North	Zone	From	То	Length	Grade g/t Au
T16RD140	481569	2248538	Eleonore	145.75	146.16	0.41	1.16
T16RD140	481565	2248539	Eleonore	152.12	152.4	0.28	0.59
T17DD001	481711	2248657	Eleonore	52.73	53.97	1.24	1.64
T17DD001	481706	2248658	Eleonore	60	61.5	1.5	0.63
T17DD001	481704	2248658	Eleonore	63.65	64	0.35	2.93
T17DD001	481690	2248660	Eleonore	86.13	87.06	0.93	0.50
T17DD001	481660	2248665	Eleonore	131.81	133.56	1.75	1.69
T17DD001	481649	2248667	Eleonore	150.57	150.9	0.33	0.77
T17DD002	482542	2250777	Eleonore	41.48	42.35	0.87	0.32
T17DD002	482519	2250792	Eleonore	82.29	82.6	0.31	0.64
T17DD002	482492	2250810	Eleonore	130.5	131	0.5	0.50
T17DD003	482416	2250738	Eleonore	31.06	33.25	2.19	1.18
T17DD003	482413	2250740	Eleonore	36.81	37.3	0.49	0.97
T17DD004	482447	2250660	Eleonore	33	35	2	0.43
T17DD004	482410	2250685	Eleonore	108.44	108.95	0.51	0.34
T17DD004	482383	2250702	Eleonore	160.69	161.04	0.35	5.35
T17DD005	482739	2251055	Eleonore	51.2	51.77	0.57	3.36
T17DD006	482219	2249914	Eleonore	37.56	38	0.44	0.36
T17DD007	482048	2249185	Eleonore	57.3	58.6	1.3	4.00
T17DD007	482041	2249189	Eleonore	70.3	71	0.7	0.53
T17DD007	482039	2249190	Eleonore	74.9	75.4	0.5	6.28
T17DD007	482037	2249192	Eleonore	78.65	80	1.35	1.09
T17DD007	482034	2249193	Eleonore	83	83.5	0.5	0.42
T17DD007	482029	2249196	Eleonore	92	95	3	0.37
T17DD007	482026	2249198	Eleonore	96.5	98	1.5	0.32
T17DD007	482015	2249204	Eleonore	116.5	118	1.5	1.49
T17DD007	482012	2249206	Eleonore	121.5	123	1.5	0.54
T17DD008	482111	2249148	Eleonore	54.4	54.9	0.5	0.65
T17DD008	482108	2249149	Eleonore	59	60.5	1.5	0.75
T17DD008	482106	2249151	Eleonore	63.78	64.4	0.62	2.33
T17DD008	482037	2249188	Eleonore	185.75	186.25	0.5	0.86
T17DD009	481727	2248868	Eleonore	20.4	21.45	1.05	0.49
T17DD009	481708	2248872	Eleonore	50.48	52	1.52	1.06
T17DD010	481920	2249039	Eleonore	86.38	87.2	0.82	0.73
T17DD010	481915	2249042	Eleonore	95	97.1	2.1	7.74
T17DD011	482117	2249742	Eleonore	60.75	61.5	0.75	0.30
T17DD011	482115	2249743	Eleonore	63.9	64.9	1	0.57
T17DD011	482112	2249745	Eleonore	68	69.75	1.75	0.31
T17DD011	482110	2249746	Eleonore	72.8	73.35	0.55	0.62

Hole Name	East	North	Zone	From	То	Length	Grade g/t Au
T17DD011	482108	2249746	Eleonore	75.25	75.85	0.6	0.34
T17DD011	482106	2249748	Eleonore	78	81	3	16.16
T17DD012	482061	2249035	Eleonore	45.55	46	0.45	0.63
T17DD012	482043	2249046	Eleonore	77.25	77.7	0.45	0.63
T17DD012	482039	2249048	Eleonore	85.4	86.15	0.75	0.60
T17DD012	482012	2249064	Eleonore	132	132.5	0.5	0.30
T17DD013	482110	2249705	Eleonore	18.5	19.5	1	1.29
T17DD014	482226	2249874	Eleonore	29.85	31	1.15	1.46
T17DD014	482219	2249878	Eleonore	43.8	44.45	0.65	0.46
T17DD015	482394	2250648	Eleonore	20.25	21.6	1.35	1.10
T17DD015	482381	2250657	Eleonore	44	44.6	0.6	0.86
T17DD015	482368	2250665	Eleonore	68.9	69.51	0.61	0.87
T17DD016	482398	2250602	Eleonore	6.1	7.6	1.5	0.40
T17DD016	482376	2250618	Eleonore	47.5	48.24	0.74	0.35
T17DD016	482375	2250619	Eleonore	48.65	51.5	2.85	1.07
T17DD016	482372	2250621	Eleonore	55.3	55.85	0.55	2.43
T17DD016	482344	2250643	Eleonore	109	112.3	3.3	12.96
T17DD018	476480	2245367	Lily	36.35	39	2.65	0.35
T17DD018	476476	2245369	Lily	43.5	44.5	1	0.48
T17DD018	476470	2245372	Lily	45.45	65	19.55	1.11
T17DD018	476459	2245377	Lily	69.5	75.5	6	0.34
T17DD018	476454	2245379	Lily	80	81.5	1.5	0.87
T17DD018	476450	2245381	Lily	87	89.5	2.5	0.46
T17DD018	476438	2245387	Lily	107.22	108.5	1.28	0.34
T17DD018	476435	2245388	Lily	111.5	114.5	3	0.71
T17DD018	476431	2245390	Lily	117.5	119	1.5	0.99
T17DD018	476415	2245398	Lily	142.5	147.71	5.21	0.53
T17RC001	481778	2249054	Eleonore	111	112	1	0.41
T17RC001	481771	2249056	Eleonore	123	124	1	0.32
T17RC002	481766	2249071	Eleonore	34	35	1	4.06
T17RC002	481735	2249089	Eleonore	91	92	1	0.48
T17RC003	481699	2249109	Eleonore	42	44	2	1.13
T17RC003	481664	2249131	Eleonore	106	107	1	0.81
T17RC003	481661	2249133	Eleonore	112	113	1	2.46
T17RC004	481634	2249151	Eleonore	50	51	1	0.34
T17RC004	481631	2249153	Eleonore	56	58	2	1.74
T17RC004	481596	2249176	Eleonore	124	126	2	0.92
T17RC007	481495	2248251	Eleonore	38	39	1	0.32
T17RC007	481447	2248267	Eleonore	119	122	3	0.39

Hole Name	East	North	Zone	From	То	Length	Grade g/t Au
T17RC008	481702	2248575	Eleonore	32	34	2	1.60
T17RC009	482275	2250233	Eleonore	46	48	2	0.44
T17RC009	482257	2250240	Eleonore	78	79	1	0.40
T17RC010	482208	2250256	Eleonore	41	42	1	0.96
T17RC010	482205	2250258	Eleonore	46	49	3	0.92
T17RC010	482177	2250268	Eleonore	93	94	1	1.07
T17RC010	482175	2250269	Eleonore	97	99	2	0.45
T17RC013	481764	2248767	Eleonore	107	108	1	0.33
T17RC013	481717	2248778	Eleonore	182	184	2	1.86
T17RC013	481707	2248780	Eleonore	197	200	3	7.69
T17RC013	481690	2248783	Eleonore	223	226	3	0.45
T17RC014	482354	2250412	Eleonore	84	86	2	0.30
T17RC014	482341	2250417	Eleonore	105	108	3	0.40
T17RC016	482160	2249717	Eleonore	118	120	2	0.58
T17RC016	482134	2249731	Eleonore	185	186	1	0.38
T17RC019	481508	2250141	Eleonore	112	114	2	0.49
T17RC022	481172	2248610	Eleonore	83	85	2	0.72
T17RC023	481127	2248614	Eleonore	44	48	4	0.99
T17RC023	481097	2248621	Eleonore	94	95	1	0.43
T17RC023	481094	2248621	Eleonore	98	102	4	0.61
T17RC024	481260	2248797	Eleonore	28	30	2	0.32
T17RC024	481222	2248806	Eleonore	88	92	4	1.38
T17RC025	481148	2248812	Eleonore	90	91	1	4.50
T17RC025	481137	2248814	Eleonore	106	112	6	1.59
T17RC027	482100	2249839	Eleonore	10	12	2	0.40
T17RC027	482081	2249850	Eleonore	45	46	1	0.35
T17RC027	482053	2249866	Eleonore	98	99	1	2.96
T17RC027	482042	2249873	Eleonore	119	120	1	0.34
T17RC028	482020	2249891	Eleonore	40	42	2	0.47
T17RC030	481892	2248953	Eleonore	80	82	2	0.48
T17RC031	482141	2249777	Eleonore	62	66	4	10.72
T17RC031	482098	2249801	Eleonore	142	143	1	0.36
T17RC032	482197	2249840	Eleonore	39	49	10	3.90
T17RC033	482364	2250463	Eleonore	38	40	2	0.76
T17RC033	482358	2250465	Eleonore	49	50	1	0.57
T17RC033	482324	2250479	Eleonore	106	108	2	0.36
T17RC033	482320	2250481	Eleonore	112	114	2	3.95
T17RC034	482545	2250882	Eleonore	8	10	2	0.88
T17RC034	482540	2250885	Eleonore	17	19	2	0.37

Hole Name	East	North	Zone	From	То	Length	Grade g/t Au
T17RC034	482537	2250887	Eleonore	22	24	2	0.58
T17RC036	481572	2248688	Eleonore	38	39	1	1.78
T17RC036	481560	2248690	Eleonore	57	60	3	0.49
T17RC036	481551	2248691	Eleonore	73	74	1	0.39
T17RC036	481547	2248692	Eleonore	78	82	4	8.33
T17RC036	481527	2248695	Eleonore	114	116	2	0.31
T17RC037	482223	2249773	Eleonore	16	22	6	1.24
T17RC038	481563	2248774	Eleonore	20	22	2	0.43
T17RC038	481553	2248774	Eleonore	36	38	2	2.36
T17RC038	481548	2248774	Eleonore	43	45	2	0.73
T17RC042	481515	2248501	Eleonore	60	63	3	0.70
T17RC042	481497	2248505	Eleonore	90	91	1	0.41
T17RC043	482018	2248984	Eleonore	16	18	2	0.83
T17RC043	482013	2248988	Eleonore	26	28	2	0.48
T17RC043	482003	2248994	Eleonore	44	48	4	0.63
T17RC044	481743	2249171	Eleonore	108	110	2	2.52
T17RC045	481714	2249213	Eleonore	55	62	7	6.33
T17RC045	481694	2249223	Eleonore	92	94	2	2.45
T17RC045	481680	2249230	Eleonore	116	118	2	1.71
T17RC046	481641	2249250	Eleonore	76	78	2	0.97
T17RC047	481824	2249590	Eleonore	70	74	4	0.60
T17RC049	481919	2249438	Eleonore	94	95	1	0.39
T17RC050	481929	2249579	Eleonore	25	32	7	31.61
T17RC050	481906	2249592	Eleonore	68	70	2	0.48
T17RC050	481852	2249624	Eleonore	166	168	2	0.37
T17RC052	481950	2249654	Eleonore	28	34	6	2.53
T17RC052	481936	2249662	Eleonore	55	57	2	0.85
T17RC053	482304	2249857	Eleonore	84	88	4	4.40
T17RC055	482361	2250526	Eleonore	12	13	1	0.52
T17RC055	482339	2250537	Eleonore	50	52	2	0.63
T17RC055	482328	2250543	Eleonore	68	72	4	2.10
T17RC056	482389	2250554	Eleonore	82	84	2	0.30
T17RC056	482370	2250564	Eleonore	112	116	4	0.72
T17RC057	482263	2250722	Eleonore	144	146	2	0.30
T17RC058	482652	2251030	Eleonore	56	57	1	1.54
T17RC059	482832	2251089	Eleonore	53	54	1	0.68
T17RC059	482829	2251096	Eleonore	63	65	2	2.59
T17RC060	482265	2250504	Eleonore	77	79	2	0.60
T17RC060	482261	2250505	Eleonore	84	86	2	0.58

Hole Name	East	North	Zone	From	То	Length	Grade g/t Au
T17RC060	482240	2250514	Eleonore	122	123	1	0.86
T17RC070	482162	2250167	Eleonore	58	60	2	0.30
T17RC070	482137	2250176	Eleonore	101	104	3	0.42
T17RC072	481993	2250296	Eleonore	68	70	2	0.48
T17RC073	482492	2250751	Eleonore	47	48	1	0.39
T17RC073	482446	2250777	Eleonore	132	133	1	0.77
T17RC074	481717	2248923	Eleonore	30	31	1	5.70
T17RC075	481652	2248625	Eleonore	66	68	2	11.79
T17RC075	481606	2248632	Eleonore	147	150	3	0.66
T17RC076	481653	2248531	Eleonore	126	134	8	2.00
T17RC076	481641	2248534	Eleonore	148	149	1	2.66
T17RC076	481638	2248535	Eleonore	154	156	2	0.43
T17RC077	481139	2248509	Eleonore	30	32	2	0.76
T17RC078	481711	2248823	Eleonore	40	41	1	1.56
T17RC078	481690	2248828	Eleonore	75	76	1	0.52
T17RC079	482809	2251037	Eleonore	119	120	1	3.96
T17RC079	482807	2251044	Eleonore	131	132	1	0.75
T17RC080	482713	2250991	Eleonore	148	152	4	0.48
T17RC082	482417	2250740	Eleonore	138	142	4	0.32
T17RC082	482413	2250742	Eleonore	148	149	1	0.37
T17RC082	482404	2250748	Eleonore	165	166	1	3.19
T17RC084	482481	2250545	Eleonore	46	48	2	1.10
T17RC084	482470	2250551	Eleonore	64	66	2	0.39
T17RC084	482451	2250561	Eleonore	98	99	1	0.81
T17RC084	482446	2250563	Eleonore	105	108	3	1.58
T17RC084	482434	2250570	Eleonore	117	138	21	3.70
T17RC085B	482267	2249796	Eleonore	31	32	1	0.52
T17RC085B	482264	2249797	Eleonore	35	37	2	0.73
T17RC086	481168	2248912	Eleonore	82	84	2	0.87
T17RC087	481261	2248890	Eleonore	49	50	1	1.20
T17RC087	481247	2248892	Eleonore	73	74	1	0.47
T17RC088	481722	2249326	Eleonore	70	72	2	0.38
T17RC089	481761	2249304	Eleonore	116	117	1	0.41
T17RC093	481975	2248347	Eleonore	106	108	2	1.11
T17RC094	481929	2248306	Eleonore	41	45	4	0.63
T17RC096B	481718	2248811	Eleonore	173	174	1	0.73
T17RC096B	481703	2248813	Eleonore	201	203	2	2.05
T17RC096B	481700	2248813	Eleonore	206	208	2	5.31
T17RC096B	481698	2248814	Eleonore	211	212	1	0.33

Hole Name	East	North	Zone	From	То	Length	Grade g/t Au
T17RC097	482032	2249247	Eleonore	74	75	1	1.24
T17RC097	482020	2249249	Eleonore	93	95	2	0.46
T17RC097	482018	2249250	Eleonore	97	98	1	0.34
T17RC099	481891	2249553	Eleonore	94	95	1	0.64
T17RC100	481972	2249644	Eleonore	32	33	1	0.89
T17RC100	481959	2249651	Eleonore	54	55	1	0.46
T17RC100	481950	2249656	Eleonore	71	72	1	0.34
T17RC100	481942	2249660	Eleonore	83	87	4	1.10
T17RC100	481934	2249665	Eleonore	98	100	2	0.60
T17RC101	481747	2248873	Eleonore	134	136	2	0.45
T17RC101	481720	2248883	Eleonore	182	185	3	2.19
T17RC101	481692	2248894	Eleonore	234	235	1	0.40
T17RC101	481691	2248894	Eleonore	236	238	2	0.40
T17RC102	481758	2248605	Eleonore	14	18	4	0.69
T17RC102	481754	2248607	Eleonore	22	24	2	0.70
T17RC102	481748	2248608	Eleonore	32	33	1	1.10
T17RC102	481741	2248610	Eleonore	44	45	1	1.29
T17RC103	481974	2249090	Eleonore	23	24	1	1.54
T17RC104	481553	2250023	Eleonore	58	61	3	6.20
T17RC105A	481945	2249569	Eleonore	56	57	1	0.41
T17RC105B	481951	2249564	Eleonore	48	49	1	0.43
T17RC106	482309	2249776	Eleonore	35	36	1	0.54
T17RC106	482260	2249816	Eleonore	148	159	11	1.09
T17RC107	481733	2249164	Eleonore	42	50	8	12.94
T17RC107	481728	2249165	Eleonore	53	55	2	0.64
T17RC107	481716	2249168	Eleonore	73	74	1	3.39
T17RC107	481689	2249176	Eleonore	117	124	7	2.71
T17RC108	482352	2249706	Eleonore	2	4	2	0.38
T17RC108	482229	2249790	Eleonore	223	234	11	0.56
T17RC109	482851	2251035	Eleonore	64	65	1	0.83
T17RC109	482844	2251056	Eleonore	98	100	2	0.60
T17RC109	482840	2251067	Eleonore	118	119	1	2.15
T17RC109	482839	2251071	Eleonore	123	125	2	5.76
T17RC110	482493	2250546	Eleonore	113	115	2	3.37
T17RC110	482484	2250552	Eleonore	132	133	1	0.42
T17RC110	482463	2250565	Eleonore	176	178	2	0.34
T17RC111	482453	2250617	Eleonore	80	85	5	1.69
T17RC112	481744	2249265	Eleonore	37	38	1	0.38
T17RC112	481730	2249268	Eleonore	58	59	1	1.71

Hole Name	East	North	Zone	From	То	Length	Grade g/t Au
T17RC112	481721	2249270	Eleonore	71	73	2	0.57
T17RC112	481678	2249282	Eleonore	134	142	8	1.21
T17RC113	481990	2249631	Eleonore	73	77	4	1.29
T17RC113	481986	2249633	Eleonore	81	82	1	0.47
T17RC113	481954	2249650	Eleonore	135	138	3	1.94
T17RC114	482000	2249734	Eleonore	99	100	1	0.32
T17RC114	481994	2249737	Eleonore	109	110	1	1.32
T17RC114	481983	2249743	Eleonore	127	128	1	0.43
T17RC115	482059	2249737	Eleonore	43	44	1	0.33
T17RC115	482056	2249738	Eleonore	45	52	7	2.70
T17RC116	482203	2249743	Eleonore	123	126	3	0.31
T17RC116	482200	2249746	Eleonore	129	133	4	0.40
T17RC117	482118	2249787	Eleonore	42	51	9	1.37
T17RC119	482407	2250507	Eleonore	83	84	1	0.76
T17RC119	482396	2250514	Eleonore	102	104	2	1.21
T17RC119	482388	2250518	Eleonore	116	118	2	0.54
T17RC119	482362	2250535	Eleonore	163	164	1	1.06
T17RC120	481800	2248775	Eleonore	124	125	1	0.68
T17RC120	481791	2248777	Eleonore	138	142	4	0.72
T17RC121	481748	2248506	Eleonore	87	89	2	1.19
T17RC121	481743	2248507	Eleonore	94	98	4	0.96
T17RC122	481914	2248653	Eleonore	62	67	5	8.38
T17RC122	481905	2248655	Eleonore	79	80	1	0.66
T17RC122	481901	2248656	Eleonore	85	86	1	0.53
T17RC123	481039	2248329	Eleonore	74	75	1	0.45
T17RC124	480988	2248337	Eleonore	44	46	2	3.20
T17RC124	480979	2248339	Eleonore	58	61	3	1.24
T17RC125	481810	2249128	Eleonore	118	120	2	1.66
T17RC126	481909	2249105	Eleonore	38	42	4	1.81
T17RC127	476594	2245518	Lily	61	62	1	0.60
T17RC127	476586	2245523	Lily	74	79	5	0.36
T17RC127	476579	2245529	Lily	88	94	6	0.57
T17RC127	476576	2245532	Lily	97	98	1	0.41
T17RC127	476573	2245534	Lily	101	103	2	0.32
T17RC127	476566	2245539	Lily	112	120	8	0.72
T17RC128	476557	2245534	Lily	11	12	1	0.40
T17RC128	476555	2245535	Lily	14	17	3	0.35
T17RC128	476552	2245537	Lily	20	21	1	0.30
T17RC128	476549	2245539	Lily	26	28	2	0.57

Hole Name	East	North	Zone	From	То	Length	Grade g/t Au
T17RC128	476545	2245541	Lily	32	34	2	0.47
T17RC130	476435	2245196	Lily	54	55	1	0.34
T17RC130	476424	2245203	Lily	72	78	6	0.37
T17RC130	476419	2245206	Lily	82	84	2	0.31
T17RC130	476413	2245211	Lily	93	96	3	0.45
T17RC130	476410	2245212	Lily	98	100	2	0.30
T17RC130	476402	2245217	Lily	110	115	5	1.63
T17RC131	481541	2249912	Eleonore	74	76	2	0.84
T17RC132	482317	2250481	Eleonore	52	54	2	0.47
T17RC134	481548	2249914	Eleonore	130	131	1	0.62
T17RC137	481134	2248668	Eleonore	94	96	2	0.91
T17RC137	481110	2248673	Eleonore	133	134	1	0.70
T17RC138	482332	2249855	Eleonore	97	98	1	0.38
T17RC138	482302	2249873	Eleonore	154	156	2	0.51
T17RC138	482300	2249874	Eleonore	158	159	1	0.44
T17RC139	481721	2248708	Eleonore	54	56	2	0.40
T17RC139	481718	2248709	Eleonore	59	61	2	0.93
T17RC140	481590	2248779	Eleonore	77	78	1	0.60
T17RC140	481576	2248780	Eleonore	99	100	1	1.48
T17RC140	481553	2248782	Eleonore	137	138	1	0.55
T17RC141	481563	2248695	Eleonore	128	129	1	0.62
T17RC141	481559	2248696	Eleonore	135	137	2	1.91
T17RC142	481546	2248596	Eleonore	115	116	1	2.16
T17RC142	481510	2248604	Eleonore	175	176	1	0.37
T17RC143	481501	2248300	Eleonore	39	41	2	0.47
T17RC143	481473	2248307	Eleonore	84	85	1	0.43
T17RC144	481480	2248356	Eleonore	71	74	3	1.57
T17RC144	481466	2248360	Eleonore	94	96	2	2.42
T17RC144	481452	2248364	Eleonore	119	120	1	3.35
T17RC145	481632	2248865	Eleonore	35	37	2	1.72
T17RC145	481587	2248877	Eleonore	104	113	9	0.60
T17RC146	481699	2248738	Eleonore	52	53	1	1.00
T17RC146	481676	2248743	Eleonore	87	89	2	0.38
T17RC146	481651	2248748	Eleonore	126	127	1	0.40
T17RC146	481632	2248753	Eleonore	152	160	8	3.36
T17RC146	481625	2248755	Eleonore	167	168	1	5.20
T17RC146	481614	2248757	Eleonore	184	187	3	0.34
T17RC146	481610	2248758	Eleonore	191	192	1	1.87
T17RC147	481163	2248713	Eleonore	4	6	2	0.58

Hole Name	East	North	Zone	From	То	Length	Grade g/t Au
T17RC147	481130	2248717	Eleonore	56	58	2	4.72
T17RC147	481117	2248720	Eleonore	76	78	2	0.34
T17RC148	481139	2248722	Eleonore	114	115	1	2.54
T17RC148	481128	2248725	Eleonore	132	134	2	0.53
T17RC149	481167	2248863	Eleonore	38	39	1	0.79
T17RC149	481149	2248867	Eleonore	65	72	7	0.59
T17RC150	481709	2249278	Eleonore	24	25	1	0.39
T17RC150	481682	2249285	Eleonore	68	69	1	0.36
T17RC150	481665	2249289	Eleonore	96	97	1	3.36
T17RC150	481662	2249290	Eleonore	100	103	3	0.64
T17RC150	481653	2249293	Eleonore	116	117	1	0.48
T17RC151	481689	2249174	Eleonore	61	63	2	1.19
T17RC151	481678	2249177	Eleonore	78	82	4	1.36
T17RC151	481672	2249178	Eleonore	88	90	2	0.58
T17RC151	481661	2249180	Eleonore	105	108	3	1.34
T17RC151	481657	2249181	Eleonore	112	114	2	0.53
T17RC151	481653	2249183	Eleonore	120	122	2	1.93
T17RC153	481134	2248650	Eleonore	84	88	4	1.68
T17RC153	481109	2248665	Eleonore	134	138	4	3.49
T17RC154	481544	2248685	Eleonore	14	16	2	0.38
T17RC154	481539	2248686	Eleonore	22	24	2	0.78
T17RC154	481536	2248686	Eleonore	28	30	2	0.33
T17RC154	481534	2248687	Eleonore	31	32	1	1.13
T17RC154	481519	2248690	Eleonore	56	58	2	2.64
T17RC154	481503	2248693	Eleonore	83	84	1	0.79
T17RC154	481495	2248695	Eleonore	96	98	2	1.60
T17RC155	475632	2248998	Sophie III	217	218	1	0.40
T17RC155	475630	2248999	Sophie III	219	227	8	1.00
T17RC155	475625	2249002	Sophie III	236	238	2	0.44
T17RC155	475624	2249003	Sophie III	241	242	1	0.30
T17RC155	475622	2249004	Sophie III	244	248	4	0.31
T17RC155	475619	2249005	Sophie III	252	259	7	0.40
T17RC155	475617	2249006	Sophie III	260	261	1	0.30
T17RC155	475616	2249008	Sophie III	265	268	3	0.55
T17RC155	475613	2249009	Sophie III	271	280	9	0.40
T17RC155	475611	2249010	Sophie III	281	282	1	0.30
T17RC155	475609	2249011	Sophie III	287	288	1	0.51
T17RC161	474100	2247737	Sophie III	17	18	1	0.61
T17RC161	474097	2247740	Sophie III	23	24	1	1.83

Hole Name	East	North	Zone	From	То	Length	Grade g/t Au
T17RC163	474216	2247763	Sophie III	29	30	1	0.31
T17RC163	474211	2247767	Sophie III	37	41	4	0.70
T17RC163	474178	2247800	Sophie III	110	111	1	1.06
T17RC168	475732	2251294	Sophie II	58	60	2	0.39
T17RC169	475752	2251281	Sophie II	110	111	1	0.31
T17RC169	475750	2251283	Sophie II	113	116	3	1.09
T17RC170	475644	2251055	Sophie II	34	37	3	1.87
T17RC171	475672	2251044	Sophie II	68	69	1	0.31
T17RC171	475665	2251050	Sophie II	81	84	3	1.06
T17RC172	475629	2250974	Sophie II	2	9	7	0.90
T17RC172	475626	2250975	Sophie II	10	11	1	0.31
T17RC173	475607	2250825	Sophie II	94	99	5	2.57
T17RC173	475586	2250839	Sophie II	132	134	2	0.62
T17RC173	475579	2250844	Sophie II	142	147	5	0.86
T17RC174	476111	2244796	Lily	77	78	1	0.95
T17RC174	476063	2244829	Lily	167	168	1	0.93
T17RC174	476037	2244847	Lily	214	221	7	0.51
T17RC174	476032	2244850	Lily	226	227	1	0.42
T17RC175	476181	2244926	Lily	28	30	2	0.38
T17RC175	476177	2244929	Lily	34	39	5	0.49
T17RC175	476174	2244931	Lily	42	43	1	0.38
T17RC175	476165	2244938	Lily	58	61	3	0.53
T17RC175	476162	2244941	Lily	64	67	3	0.67
T17RC175	476156	2244945	Lily	74	78	4	0.59
T17RC175	476152	2244948	Lily	82	86	4	0.36
T17RC175	476139	2244959	Lily	109	110	1	0.37
T17RC175	476126	2244968	Lily	134	135	1	0.47
T17RC175	476125	2244969	Lily	136	138	2	0.41
T17RC176	476478	2245087	Lily	57	58	1	0.35
T17RC176	476458	2245105	Lily	96	97	1	0.45
T17RC176	476426	2245134	Lily	156	158	2	0.36
T17RC176	476394	2245166	Lily	222	224	2	0.50
T17RC176	476385	2245175	Lily	241	245	4	0.40
T17RC177	476519	2245350	Lily	142	144	2	0.41
T17RC177	476514	2245354	Lily	152	153	1	1.84
T17RC177	476511	2245356	Lily	159	160	1	0.30
T17RC177	476510	2245357	Lily	161	162	1	0.34
T17RC177	476504	2245361	Lily	172	173	1	0.34
T17RC177	476497	2245366	Lily	185	190	5	0.51

Hole Name	East	North	Zone	From	То	Length	Grade g/t Au
T17RC177	476490	2245372	Lily	194	211	17	1.01
T17RC177	476484	2245376	Lily	214	215	1	0.35
T17RC177	476482	2245378	Lily	216	224	8	0.71
T17RC177	476475	2245383	Lily	232	236	4	0.53
T17RC177	476472	2245386	Lily	238	246	8	0.51
T17RC177	476466	2245391	Lily	252	258	6	0.87
T17RC177	476462	2245394	Lily	263	264	1	0.93
T17RC177	476447	2245407	Lily	296	298	2	0.52
T17RC177	476441	2245414	Lily	308	316	8	0.58
T17RC178	476786	2245594	Lily	95	97	2	0.58
T17RC178	476771	2245604	Lily	123	124	1	0.37
T17RC178	476768	2245606	Lily	128	130	2	0.38
T17RC178	476764	2245610	Lily	137	138	1	0.58
T17RC178	476761	2245612	Lily	142	144	2	0.41
T17RC178	476755	2245616	Lily	154	155	1	0.75
T17RC178	476750	2245620	Lily	159	170	11	0.36
T17RC178	476734	2245631	Lily	194	195	1	0.65
T17RC178	476729	2245634	Lily	204	206	2	0.40
T17RC178	476727	2245636	Lily	208	210	2	0.74
T17RC179	481765	2249204	Eleonore	49	50	1	0.76
T17RC179	481742	2249208	Eleonore	86	87	1	0.41
T17RC179	481715	2249211	Eleonore	125	130	5	1.27
T17RC179	481708	2249212	Eleonore	139	140	1	2.29
T17RC179	481699	2249214	Eleonore	154	155	1	0.33
T17RC179	481696	2249214	Eleonore	158	159	1	0.60
T17RC179	481692	2249215	Eleonore	164	168	4	6.14
T17RC180	481895	2248603	Eleonore	56	59	3	1.87
T17RC181	481944	2248651	Eleonore	80	82	2	1.12
T17RC181	481922	2248655	Eleonore	113	115	2	3.85
T17RC181	481907	2248659	Eleonore	138	139	1	0.30
T17RC182	481926	2248696	Eleonore	54	55	1	0.73
T17RC182	481923	2248696	Eleonore	59	60	1	0.31
T17RD002	481692	2249113	Eleonore	168	171.7	3.7	9.92
T17RD002	481689	2249115	Eleonore	175.7	176.5	0.8	0.32
T17RD002	481686	2249117	Eleonore	181.2	182.35	1.15	5.76
T17RD002	481671	2249125	Eleonore	209	209.5	0.5	0.68
T17RD002	481670	2249125	Eleonore	210.5	211	0.5	0.43
T17RD002	481669	2249126	Eleonore	211.5	212	0.5	1.61
T17RD011	482292	2249963	Eleonore	61.5	62.19	0.69	2.90

Hole Name	East	North	Zone	From	То	Length	Grade g/t Au
T17RD011	482275	2249972	Eleonore	90.82	91.35	0.53	0.34
T17RD011	482268	2249975	Eleonore	103	103.5	0.5	2.21
T17RD011	482241	2249990	Eleonore	148.7	149.21	0.51	1.40
T17RD024	481163	2248821	Eleonore	191	192	1	0.52
T17RD024	481137	2248826	Eleonore	235.75	236.35	0.6	4.30
T17RD037	482188	2249793	Eleonore	80.47	81	0.53	0.37
T17RD037	482187	2249793	Eleonore	81.5	82	0.5	1.81
T17RD037	482173	2249801	Eleonore	106	107	1	0.38
T17RD044	481733	2249173	Eleonore	124.8	125.75	0.95	1.64
T17RD044	481712	2249177	Eleonore	155.75	159.75	4	2.81
T17RD044	481704	2249179	Eleonore	171.2	171.7	0.5	0.34
T17RD044	481702	2249179	Eleonore	174	174.55	0.55	0.47
T17RD044	481697	2249180	Eleonore	181.6	182.5	0.9	0.51
T17RD044	481693	2249181	Eleonore	186.6	189.65	3.05	5.81
T17RD044	481688	2249182	Eleonore	197	197.5	0.5	0.75
T17RD044	481677	2249184	Eleonore	213.65	214.5	0.85	0.43
T17RD064	481553	2248592	Eleonore	31.2	32.2	1	0.36
T17RD064	481542	2248594	Eleonore	49.5	50	0.5	0.37
T17RD064	481540	2248594	Eleonore	52.55	52.93	0.38	0.30
T17RD064	481539	2248594	Eleonore	53.8	54.38	0.58	0.80
T17RD064	481527	2248597	Eleonore	73.15	74.25	1.1	44.02
T17RD064	481521	2248598	Eleonore	82.5	83	0.5	1.95
T17RD064	481506	2248601	Eleonore	106.34	107.25	0.91	0.57
T17RD064	481503	2248602	Eleonore	110.55	111.7	1.15	1.31
T17RD065	482308	2250378	Eleonore	66.75	67.9	1.15	1.67
T17RD065	482289	2250387	Eleonore	99.35	99.8	0.45	0.56
T17RD068	482340	2250584	Eleonore	43.5	44	0.5	0.32
T17RD068	482338	2250585	Eleonore	44.92	49.5	4.58	1.55
T17RD068	482334	2250587	Eleonore	53.5	55	1.5	0.43
T17RD081	482317	2249861	Eleonore	38	44	6	2.07
T17RD081	482310	2249865	Eleonore	52.6	53.45	0.85	0.37
T17RD081	482309	2249866	Eleonore	55.5	56	0.5	0.33
T17RD081	482305	2249868	Eleonore	60.5	62	1.5	4.18
T17RD081	482289	2249877	Eleonore	90.6	91	0.4	0.35
T17RD081	482240	2249906	Eleonore	180.7	181.1	0.4	1.00
T17RD085B	482247	2249807	Eleonore	67.05	67.85	0.8	0.69
T17RD085B	482243	2249810	Eleonore	74.8	75.3	0.5	0.35
T17RD085B	482240	2249812	Eleonore	77.65	84.1	6.45	0.88
T17RD085B	482236	2249815	Eleonore	87	87.75	0.75	0.47

Hole Name	East	North	Zone	From	То	Length	Grade g/t Au
T17RD085B	482230	2249819	Eleonore	98.47	100.5	2.03	17.05
T17RD085B	482227	2249821	Eleonore	103.5	104.5	1	0.45
T17RD085B	482225	2249822	Eleonore	108	109	1	0.40
T17RD085B	482181	2249852	Eleonore	191	191.25	0.25	0.45
T17RD085B	482180	2249853	Eleonore	192.5	193.5	1	0.38
T17RD085B	482171	2249859	Eleonore	210	210.7	0.7	0.40
T17RD132	482298	2250489	Eleonore	86.57	88.7	2.13	0.88
T17RD132	482263	2250503	Eleonore	148	149	1	1.57
T17RD139	481685	2248717	Eleonore	114.5	115	0.5	0.78
T17RD139	481683	2248718	Eleonore	118	118.5	0.5	1.17
T17RD139	481679	2248719	Eleonore	123.7	124.7	1	1.55
T17RD139	481664	2248723	Eleonore	149.3	149.9	0.6	64.12
T17RD139	481662	2248724	Eleonore	153	154	1	3.39
T17RD139	481648	2248728	Eleonore	175.45	178.6	3.15	1.23
T17RD139	481645	2248728	Eleonore	181.1	181.5	0.4	0.40
T17RD139	481644	2248729	Eleonore	182	184.4	2.4	5.06
T17RD165	475425	2248717	Sophie III	72	73	1	0.66
T17RD165	475420	2248720	Sophie III	79	85	6	0.47
T17RD165	475414	2248724	Sophie III	92	95	3	1.32
T17RD165	475410	2248726	Sophie III	99	101	2	0.83
T17RD165	475408	2248727	Sophie III	103.75	104.95	1.2	0.50
T17RD165	475405	2248729	Sophie III	108	109	1	0.38
T17RD165	475399	2248732	Sophie III	119.32	120	0.68	0.39
T17RD165	475387	2248739	Sophie III	139	142	3	0.44
T17RD165	475385	2248741	Sophie III	145	146	1	0.66
T17RD165	475379	2248744	Sophie III	155.55	156.32	0.77	0.54
T17RD165	475377	2248745	Sophie III	157.75	158.4	0.65	0.66
T17RD165	475373	2248748	Sophie III	162	169	7	0.36
T17RD167	475775	2251344	Sophie II	121.5	122.5	1	1.00
T17RD167	475773	2251345	Sophie II	126.05	127	0.95	0.63

